Abstract

Computational fluid dynamics (CFD) simulation of flow over a three-dimensional (3D) axisymmetric hill presents a unique set of challenges for turbulence modeling. The flow past the crest of the hill is characterized by boundary layer separation, complex vortical structures, and unsteady wake flow. As a result, traditional eddy-viscosity Reynolds-averaged Navier–Stokes (RANS) models have been found to perform poorly for this benchmark test case. Recent studies have focused on the use of large eddy simulation (LES) and hybrid RANS–LES (HRL) methods to improve accuracy. In this study, several different HRL models are investigated, and results from the different models are evaluated relative to each other, to an eddy-viscosity RANS model, and to previously documented high-fidelity LESs and experimental data. Results obtained from the simulations in terms of mean flow statistics, surface pressure distribution, and turbulence characteristics are presented and discussed in detail. Results indicate that eddy-viscosity based HRL models can improve predictions over comparable eddy-viscosity based RANS models such as the shear stress transport (SST) k–ω model used in this study, but only when the development of turbulent velocity fluctuations in the separated shear layer and recirculation region are well resolved.

References

1.
Jackson
,
P. S.
, and
Hunt
,
J. C. R.
,
1975
, “
Turbulent Wind Flow Over a Low Hill
,”
Q. J. R. Meteorol. Soc.
,
101
(
430
), pp.
929
955
.10.1002/qj.49710143015
2.
Temmerman
,
L.
,
Leschziner
,
M.
, and
Hanjali
c,
K.
,
2002
, “
A-Priori Studies of Near-Wall RANS Modeling and a Hybrid LES/RANS Scheme
,” Proceedings of the 5th International Symposium on Engineering Turbulence Modelling and Measurements, Mallorca, Spain,
Elsevier
, Amsterdam, The Netherlands, pp.
317
326
.
3.
Persson
,
T.
,
Liefvendahl
,
M.
,
Bensow
,
R. E.
, and
Fureby
,
C.
,
2006
, “
Numerical Investigation of the Flow Over an Axisymmetric Hill Using LES, DES, and RANS
,”
J. Turbul.
,
7
(
4
), pp.
1
17
.10.1080/14685240500543165
4.
Patel
,
N.
, and
Menon
,
S.
,
2007
, “
Structure of Flow Separation and Reattachment Behind an Axisymmetric Hill
,”
J. Turbul.
,
8
(
36
), pp.
1
24
.10.1080/14685240701534484
5.
Davidson
,
L.
, and
Dahlstöm
S.
,
2005
, “
Hybrid LES-RANS: Computation of the Flow Around a Three-Dimensional Hill
,”
Procedings of the ERCOFTAC International Symposium on Engineering Turbulence Modelling and Measurements; ETMM6, Sardinia, Italy,
Elsevier
, Amsterdam, The Netherlands, pp.
319
328
.
6.
Garcia-Villalba
,
M.
,
Li
,
N.
,
Rodi
,
W.
, and
Leschziner
,
M. A.
,
2009
, “
Large-Eddy Simulation of Separated Flow Over a Three-Dimensional Axisymmetric Hill
,”
J. Fluid Mech.
,
627
, pp.
55
96
.10.1017/S0022112008005661
7.
Simpson
,
R. L.
,
Long
,
C. H.
, and
Byun
,
G.
,
2002
, “
Study of Vortical Separation From an Axisymmetric Hill
,”
Int. J. Heat Fluid Flow
,
23
(
5
), pp.
582
591
.10.1016/S0142-727X(02)00154-6
8.
Byun
,
G.
,
Simpson
,
R. L.
, and
Long
,
C. H.
,
2004
, “
Study of Vortical Separation From Three-Dimensional Symmetric Bumps
,”
AIAA J.
,
42
(
4
), pp.
754
765
.10.2514/1.1829
9.
Byun
,
G.
, and
Simpson
,
R. L.
,
2006
, “
Structure of Three-Dimensional Separated Flow on an Axisymmetric Bump
,”
AIAA J.
,
44
(
5
), pp.
999
1008
.10.2514/1.17002
10.
Ma
,
R.
, and
Simpson
,
R. L.
,
2005
, “
Characterization of Turbulent Flow Downstream of a Three-Dimensional Axisymmetric Bump
,”
Proceedings of the Fourth International Symposium on Turbulence and Shear Flow Phenomena
, Williamsburg, VA, June 27–29, pp.
1171
1176
.
11.
Ishihara
,
T.
,
Hibi
,
K.
, and
Oikawa
,
S.
,
1999
, “
A Wind Tunnel Study of Turbulent Flow Over a Three-Dimensional Steep Hill
,”
J. Wind Eng. Ind. Aerodyn.
,
83
(
1–3
), pp.
95
107
.10.1016/S0167-6105(99)00064-1
12.
Probst
,
A.
,
Radespiel
,
R.
,
Wolf
,
C.
,
Knopp
,
T.
, and
Schwamborn
,
D.
,
2010
, “
A Comparison of Detached-Eddy Simulation and Reynolds-Stress Modeling Applied to the Flow Over a Backward-Facing Step and an Airfoil at Stall
,”
AIAA
Paper No. 2010-920.10.2514/6.2010-920
13.
Shur
,
M.
,
Spalart
,
P.
,
Strelets
,
M.
, and
Travin
,
A.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.10.1016/j.ijheatfluidflow.2008.07.001
14.
Chitta
,
V.
,
Jamal
,
T.
, and
Walters
,
D. K.
,
2019
, “
Computational Fluid Dynamics Study of Separated Flow Over a Three-Dimensional Hill
,”
ASME J. Fluids Eng.
,
141
(
1
), p.
011205
.10.1115/1.4040467
15.
Chitta
,
V.
,
Dhakal
,
T. P.
, and
Walters
,
D. K.
,
2015
, “
Sensitization of a Transition-Sensitive Linear Eddy-Viscosity Model to Rotation and Curvature Effects
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031207
.10.1115/1.4028627
16.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid‐Scale Eddy Viscosity Model
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
17.
Bhushan
,
S.
, and
Walters
,
D. K.
,
2012
, “
A Dynamic Hybrid RANS/LES Modeling Framework
,”
Phys. Fluids
,
24
(
1
), p.
015103
.10.1063/1.3676737
18.
Walters
,
D. K.
,
Bhushan
,
S.
,
Alam
,
M. F.
, and
Thompson
,
D.
,
2013
, “
Investigation of a Dynamic Hybrid RANS/LES Modeling Methodology for Finite Volume CFD Simulations
,”
Flow, Turbul. Combust.
,
91
(
3
), pp.
643
667
.10.1007/s10494-013-9481-9
19.
Splalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439.10.2514/6.92-0439
20.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
21.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
22.
Spalart
,
P.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Advances in DNS/LES: First AFOSR International Conference on DNS/LES
,
C.
Liu
and
Z.
Liu
, eds., Greyden, Columbus, OH.
23.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R. B.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Fourth International Symposium on Turbulence, Heat and Mass Transfer
, Antalya, Turkey, pp.
625
632
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.2814&rep=rep1&type=pdf
24.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.10.1007/s00162-006-0015-0
25.
Nichols
,
R. H.
, and
Nelson
,
C. C.
,
2003
, “
Application of Hybrid RANS/LES Turbulence Models
,”
AIAA
Paper No. 2003-83.10.2514/6.2003-83
26.
Nichols
,
R. H.
,
2005
, “
Comparison of Hybrid RANS/LES Turbulence Models on a Circular Cylinder at High Reynolds Number
,”
AIAA
Paper No. 2005-498.10.2514/6.2005-498
27.
Fureby
,
C.
, and
Grinstein
,
F. F.
,
1998
, “
High Reynolds Number Large-Eddy Simulation of Free Shear Flows
,”
Sixteenth International Conference on Numerical Methods in Fluid Dynamics
(Lecture Notes in Physics, Vol.
515
),
Springer
,
Berlin/ Heidelberg
.
28.
Adedoyin
,
A. A.
,
Walters
,
D. K.
, and
Bhushan
,
S.
,
2015
, “
Investigation of Turbulence Model and Numerical Scheme Combinations for Practical Finite Volume Large Eddy Simulations
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
324
342
.10.1080/19942060.2015.1028151
29.
Bhushan
,
S.
,
Alam
,
M. F.
, and
Walters
,
D. K.
,
2013
, “
Evaluation of Hybrid RANS/LES Models for Prediction of Flow Around Surface Combatant and Suboff Geometries
,”
Comput. Fluids
,
88
, pp.
834
849
.10.1016/j.compfluid.2013.07.020
30.
Hassan
,
E.
,
Peterson
,
D. M.
,
Walters
,
D. K.
, and
Luke
,
E.
,
2016
, “
Dynamic Hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulation of a Supersonic Cavity
,”
J. Propul. Power
,
32
(
6
), pp.
1343
1352
.10.2514/1.B36132
31.
Hassan
,
E.
,
Luke
,
E. A.
,
Walters
,
D. K.
,
Peterson
,
D. M.
,
Eklund
,
D.
, and
Hagenmaier
,
M.
,
2017
, “
Computations of a Hydrogen-Fueled Scramjet Combustor on Locally Refined Meshes
,”
Flow, Turbul. Combust.
,
99
(
2
), pp.
437
459
.10.1007/s10494-017-9821-2
32.
Luke
,
E.
, and
George
,
T.
,
2005
, “
Loci: A Rule-Based Framework for Parallel Multidisciplinary Simulation Synthesis
,”
J. Funct. Program.
,
15
(
3
), pp.
477
502
.10.1017/S0956796805005514
33.
Luke
,
E. A.
,
Tong
,
X.
,
Wu
,
J.
,
Cinella
,
P.
, and
Chamberlain
,
R.
,
2014
, “
CHEM 3.3: A Finite-Rate Viscous Chemistry Solver—The User Guide
,”
Mississippi State University
,
Starkville, MS
.
34.
Poe
,
N. M. W.
,
Walters
,
D. K.
,
Luke
,
E. A.
, and
Morris
,
C. I.
,
2015
, “
A Low-Dissipation Second-Order Upwind Flux Formulation for Simulation of Complex Turbulent Flows
,”
ASME
Paper No. IMECE2015-53725.10.1115/IMECE2015-53725
You do not currently have access to this content.