Abstract

This study evaluates the influence of transition and turbulence modeling on the prediction of wetted and cavitating tip vortices for an elliptical wing, while investigating the numerical errors. Transition modeling increases the quality of numerical predictions since the assumption of a fully turbulent boundary layer, commonly found in literature, contributes to underprediction of the tip vortex cavity size. By applying the local correlation-based transition model (LCTM) and controlling the boundary layer thickness using different turbulent inflow conditions, the pressure in the vortex was found to reduce by 20% for an Angle of Attack (AoA) of 5 deg. The consequent increase in cavity size was found to be of a similar order of magnitude. At 9 deg AoA, transition always occurs just downstream of the leading edge, making this AoA more suitable to investigate the effect of different turbulence modeling approaches. Azimuthal and axial velocity fields are validated against stereographic-particle image velocimetry (S-PIV) measurements. The time-averaged velocity profiles predicted by delayed detached-eddy simulation (DDES) and improved delayed detached-eddy simulation (IDDES) are close to the experiments; however, no velocity fluctuations and vortex dynamics are observed around the vortex. A comparison of wetted and cavitating simulations shows that the cavity leads to a change in the balance between production and destruction of turbulence kinetic energy, which reduces the turbulent diffusion in and around the cavity compared to wetted flow conditions. Consequently, the vapor flow exhibits the characteristics of a potential flow. Whether this is physically plausible remains to be investigated.

References

1.
Hildebrand
,
J. A.
,
2009
, “
Anthropogenic and Natural Sources of Ambient Noise in the Ocean
,”
Mar. Ecol.: Prog. Ser.
,
395
, pp.
5
20
.10.3354/meps08353
2.
Frisk
,
G. V.
,
2012
, “
Noiseonomics: The Relationship Between Ambient Noise Levels in the Sea and Global Economic Trends
,”
Sci. Rep.
,
2
(
1
), pp.
437
441
.10.1038/srep00437
3.
DNV GL
,
2015
, “
Living and Working Conditions, Section 1 Comfort Class
,”
Rules for Classification, Ships
, DNV GL, Høvik, Norway, Chap. 8.https://rules.dnvgl.com/docs/pdf/DNVGL/RU-SHIP/2015-10/DNVGL-RU-SHIP-Pt6Ch8.pdf
4.
De Lorenzo
,
F.
, and
Biot
,
M.
,
2006
, “
Noise and Vibration: Comfort Standards Evolving in the Wrong Direction?
,”
Nav. Archit.
, pp.
36
39
.
5.
van Wijngaarden
,
E.
,
Bosschers
,
J.
, and
Kuiper
,
G.
,
2005
, “
Aspects of the Cavitating Propeller Tip Vortex as a Source of Inboard Noise and Vibration
,”
ASME
Paper No. FEDSM2005-77271.10.1115/FEDSM2005-77271
6.
Bosschers
,
J.
,
2018
, “
Propeller Tip-Vortex Cavitation and Its Broadband Noise
,” Ph.D. thesis,
University of Twente
,
Enschede, The Netherlands
.
7.
Carlton
,
J.
,
2018
,
Marine Propellers and Propulsion
,
Elsevier Butterworth-Heinemann
, Oxford, UK.
8.
Higuchi
,
H.
,
Arndt
,
R.
, and
Rogers
,
M.
,
1989
, “
Characteristics of Tip Vortex Cavitation Noise
,”
ASME J. Fluids Eng.
,
111
(
4
), pp.
495
501
.10.1115/1.3243674
9.
Dacles-Mariani
,
J.
,
Zilliac
,
G. G.
,
Chow
,
J. S.
, and
Bradshaw
,
P.
,
1995
, “
Numerical/Experimental Study of a Wingtip Vortex in the Near Field
,”
AIAA J.
,
33
(
9
), pp.
1561
1568
.10.2514/3.12826
10.
Pennings
,
P.
,
Westerweel
,
J.
, and
Van Terwisga
,
T.
,
2015
, “
Flow Field Measurement Around Vortex Cavitation
,”
Exp. Fluids
,
56
(
11
), pp.
206
219
.10.1007/s00348-015-2073-9
11.
Schot
,
J. J.
,
Pennings
,
P. C.
,
Pourquie
,
M.
, and
Van Terwisga
,
T. J.
,
2014
, “
Modelling of Tip Vortex Cavitation for Engineering Applications in OpenFOAM
,” Proceedings-WCCM XI: 11th World Congress on Computational Mechanics (
CIMNE
), Barcelona, Spain, July 20–25,
pp.
1
12
.
12.
Asnaghi
,
A.
,
2018
, “
Computational Modelling for Cavitation and Tip Vortex Flows
,” Ph.D. thesis,
Chalmers University of Technology
,
Gothenburg, Sweden
.
13.
Paskin
,
L.
,
2018
, “
A Numerical Assessment of Turbulence Modeling in Tip Vortex Flows at Cavitating Conditions
,” Master's thesis,
Ecole Centrale de Nantes
,
Nantes, France
.
14.
Arndt
,
R.
,
Arakeri
,
V.
, and
Higuchi
,
H.
,
1991
, “
Some Observations of Tip-Vortex Cavitation
,”
J. Fluid Mech.
,
229
(
1
), pp.
269
289
.10.1017/S0022112091003026
15.
Pennings
,
P.
,
Bosschers
,
J.
,
Westerweel
,
J.
, and
Van Terwisga
,
T.
,
2015
, “
Dynamics of Isolated Vortex Cavitation
,”
J. Fluid Mech.
,
778
, pp.
288
313
.10.1017/jfm.2015.379
16.
Asnaghi
,
A.
,
Bensow
,
R.
, and
Svennberg
,
U.
,
2017
, “
Comparative Analysis of Tip Vortex Flow Using RANS and LES
,”
Seventh International Conference on Computational Methods in Marine Engineering
, Nantes, France, June 15–17, pp.
1
12
.https://www.researchgate.net/publication/316460252_COMPARATIVE_ANALYSIS_OF_TIP_VORTEX_FLOW_USING_RANS_AND_LES
17.
Pereira
,
F. S.
,
Eça
,
L.
, and
Vaz
,
G.
,
2019
, “
Simulation of Wingtip Vortex Flows With Reynolds-Averaged Navier–Stokes and Scale-Resolving Simulation Methods
,”
AIAA J.
,
57
(
3
), pp.
932
948
.10.2514/1.J057512
18.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), pp.
625
632
.https://cfd.spbstu.ru/agarbaruk/doc/2003_Menter,%20Kuntz,%20Langtry_Ten%20years%20of%20industrial%20experience%20with%20the%20SST%20turbulence%20model.pdf
19.
Menter
,
F. R.
,
Egorov
,
Y.
, and
Rusch
,
D.
,
2006
, “
Steady and Unsteady Flow Modelling Using the k- kL Model
,”
ICHMT Digital Library Online
,
Begell House
, Danburry, CT.
20.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
.10.1017/S0022112099007004
21.
Eisfeld
,
B.
, and
Brodersen
,
O.
,
2005
, “
Advanced Turbulence Modelling and Stress Analysis for the DLR-F6 Configuration
,”
AIAA Paper No. 2005-4727.
22.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
196
.10.1007/s00162-006-0015-0
23.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.10.1016/j.ijheatfluidflow.2008.07.001
24.
Maines
,
B. H.
, and
Arndt
,
R.
,
1997
, “
Tip Vortex Formation and Cavitation
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
413
419
.10.1115/1.2819149
25.
McCormick
,
B.
,
1962
, “
On Cavitation Produced by a Vortex Trailing From a Lifting Surface
,”
ASME J. Basic Eng.
,
84
(
3
), pp.
369
378
.10.1115/1.3657328
26.
Lamb
,
H.
,
1932
,
Hydrodynamics
, 6th ed.,
Cambridge University Press
, Cambridge, UK.
27.
Kaden
,
H.
,
1931
, “
Aufwicklung Einer Unstabilen Unstetigkeitsfläche
,”
Arch. Appl. Mech.
,
2
(
2
), pp.
140
168
.10.1007/BF02079924
28.
Moore
,
D.
,
1974
, “
A Numerical Study of the Roll-Up of a Finite Vortex Sheet
,”
J. Fluid Mech.
,
63
(
2
), pp.
225
235
.10.1017/S002211207400111X
29.
Hellsten
,
A. K.
,
2005
, “
New Advanced k ω Turbulence Model for High-Lift Aerodynamics
,”
AIAA J.
,
43
(
9
), pp.
1857
1869
.10.2514/1.13754
30.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schütze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model
,”
Flow, Turbul. Combust.
,
88
(
3
), pp.
431
449
.10.1007/s10494-011-9378-4
31.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.10.2514/1.42362
32.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VoF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
33.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,” Fourth International Conference on Multiphase Flow (
ICMF
), Vol.
1
,
New Orleans, LA
, May 27–June 1, pp.
1
12
.https://www.researchgate.net/publication/296196752_Physical_and_Numerical_Modeling_of_Unsteady_Cavitation_Dynamics
34.
Liebrand
,
R.
,
2019
, “
Tip Vortex Modelling for Cavitation Noise Applications: A Verification and Validation Study in ReFRESCO
,” Master's thesis,
Delft University of Technology
,
Delft, The Netherlands
.
35.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.10.1016/j.jcp.2014.01.006
36.
Brouwer
,
J.
,
Tukker
,
J.
, and
Van Rijsbergen
,
M.
,
2015
, “
Uncertainty Analysis and Stationarity Test of Finite Length Time Series Signals
,” Fourth International Conference on Advanced Model Measurement Technology for the Maritime Industry (
AMT 15
), Istanbul, Turkey, Oct. 7–9, pp.
1
14
.https://www.researchgate.net/publication/295694401_Uncertainty_Analysis_and_Stationarity_Test_of_Finite_Length_Time_Series_Signals
37.
Arndt
,
R. E.
, and
Keller
,
A. P.
,
1992
, “
Water Quality Effects on Cavitation Inception in a Trailing Vortex
,”
ASME J. Fluids Eng.
,
114
(
3
), pp.
430
438
.10.1115/1.2910049
38.
ASME
,
2009
,
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
ASME
,
New York
.
39.
Hills
,
R. G.
,
2006
, “
Model Validation: Model Parameter and Measurement Uncertainty
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
339
351
.10.1115/1.2164849
40.
Higuchi
,
H.
,
Quadrelli
,
J. C.
, and
Farell
,
C.
,
1987
, “
Vortex Roll-Up From an Elliptic Wing at Moderately Low Reynolds Numbers
,”
AIAA J.
,
25
(
12
), pp.
1537
1542
.10.2514/3.9821
41.
Vaz
,
G.
,
Jaouen
,
F.
, and
Hoekstra
,
M.
,
2009
, “
Free Surface Viscous Flow Computations: Validation of URANS Code FRESCO
,”
ASME
Paper No. OMAE2009-79398.10.1115/OMAE2009-79398
42.
Liebrand
,
R.
,
Klapwijk
,
M.
,
Lloyd
,
T.
,
Vaz
,
G.
, and
Lopes
,
R.
,
2019
, “
A Sensitivity Analysis of CFD Transition Modelling in the Context of Vortex Roll-Up Prediction
,”
Proceedings of Eighth International Conference on Computational Methods in Marine Engineering
, Gothenburg, Sweden, May 13–15, pp.
1
12
.https://www.researchgate.net/publication/333395432_A_SENSITIVITY_ANALYSIS_OF_CFD_TRANSITION_MODELLING_IN_THE_CONTEXT_OF_VORTEX_ROLL-UP_PREDICTION
43.
Lloyd
,
T.
,
Vaz
,
G.
,
Rijpkema
,
D.
, and
Reverberi
,
A.
,
2017
, “
Computational Fluid Dynamics Prediction of Marine Propeller Cavitation Including Solution Verification
,”
Fifth International Symposium on Marine Propulsors
, Espoo, Finland, June 12–15, pp.
1
13
.https://www.researchgate.net/publication/316240685_Computational_fluid_dynamics_prediction_of_marine_propeller_cavitation_including_solution_verification
44.
Asnaghi
,
A.
,
Bensow
,
R. E.
, and
Svennberg
,
U.
,
2017
, “
Implicit Large Eddy Simulation of Tip Vortex on an Elliptical Foil
,” Fifth International Symposium on Marine Propulsion (
SMP
), Espoo, Finland, June 12–15, pp.
1
8
.https://www.researchgate.net/publication/316460169_Implicit_Large_Eddy_Simulation_of_Tip_Vortex_on_an_Elliptical_Foil
45.
Maines
,
B.
, and
Arndt
,
R. E.
,
1997
, “
The Case of the Singing Vortex
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
271
276
.10.1115/1.2819130
46.
Klapwijk
,
M.
,
Lloyd
,
T.
,
Vaz
,
G.
, and
van Terwisga
,
T.
,
2020
, “
Evaluation of Scale-Resolving Simulations for a Turbulent Channel Flow
,”
Comput. Fluids
,
209
, p.
104636
.10.1016/j.compfluid.2020.104636
You do not currently have access to this content.