Abstract

X-ray particle tracking velocimetry (PTV) is performed, for the first time, to measure the velocity field inside a leading-edge of a turbine blade made by laser-additive-manufacturing (LAM) process. The traditional showerhead holes were replaced by a porous matrix in the leading-edge. The flow through such a leading-edge piece cannot be faithfully recreated by traditional prototype testing methods due to the surface roughness and imperfections caused by LAM process. Hence, direct measurement is the only option. However, it is difficult to measure flow inside such pieces with traditional velocimetry measurements due to the existence of metallic walls. Moreover, small internal size and high flow speeds call for a measurement technique with high spatial and temporal resolutions. To address these issues, we performed time-resolved X-ray PTV using the Advanced Photon Source (APS) synchrotron facility at the Argonne National Laboratory (ANL). A hydraulic system was constructed to run water, mixed with seeding particles, through the leading-edge piece. A high-speed camera captured the images of the seeding particles, which were later processed to create particle tracks. The time-averaged velocity field showed distinct pairs of vortices located in front of the porous outlet inside the leading-edge piece. The inlet channel showed reversed flow due to partial obstruction by the porous inlet of the test piece. Such knowledge of the flow field inside a leading-edge of a turbine blade will help us to design better cooling paths leading to higher cooling efficiency and increased life-span of a turbine blade.

References

1.
Sleiti
,
A.
, and
Kapat
,
J.
,
2006
, “
An Experimental Investigation of Liquid Jet Impingement and Single-Phase Spray Cooling Using Polyalphaolefin
,”
Exp. Heat Transfer
,
19
(
2
), pp.
149
163
.10.1080/08916150500479349
2.
Johnson
,
P. L.
, and
Kapat
,
J. S.
,
2013
, “
Large-Eddy Simulations of a Cylindrical Film Cooling Hole
,”
J. Thermophys. Heat Transfer
,
27
(
2
), pp.
255
273
.10.2514/1.T3890
3.
Natsui
,
G.
,
Voet
,
M. T.
,
Little
,
Z.
,
Fernandez
,
E.
,
Kapat
,
J.
, and
Dees
,
J. E.
,
2016
, “
Hydrodynamic Measurements Throughout a Flat Plate Multi-Row Film Cooling Array With Inclined Holes
,”
ASME
Paper No. GT2016-56184.10.1115/GT2016-56184
4.
Santos
,
E. C.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Laoui
,
T.
,
2006
, “
Rapid Manufacturing of Metal Components by Laser Forming
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1459
1468
.10.1016/j.ijmachtools.2005.09.005
5.
Bernstein
,
J. A.
,
Bravato
,
A.
,
Ealy
,
B.
,
Ricklick
,
M.
,
Kapat
,
J. S.
,
Mingareev
,
I.
,
Richardson
,
M.
,
Meiners
,
W.
, and
Kelbassa
,
I.
,
2013
, “
Fabrication and Analysis of Porous Superalloys for Turbine Components Using Laser Additive Manufacturing
,”
AIAA
Paper No.
2013
4178
. https://doi.org/10.2514/6.2013-4178
6.
Calderon
,
L.
,
Curbelo
,
A.
,
Gupta
,
G.
, and
Kapat
,
J. S.
,
2018
, “
Adiabatic Film Cooling Effectiveness of a Lam Fabricated Porous Leading Edge Segment of a Turbine Blade
,”
ASME
Paper No. GT2018-77114.10.1115/GT2018-77114
7.
Ghosh
,
S.
, and
Kapat
,
J. S.
,
2019
, “
Topology Optimization of Serpentine Channels for Minimization of Pressure Loss and Maximization of Heat Transfer Performance as Applied for Additive Manufacturing
,”
ASME
Paper No. GT2019-91057.10.1115/GT2019-91057
8.
Ealy
,
B.
,
Calderon
,
L.
,
Wang
,
W.
,
Valentin
,
R.
,
Mingareev
,
I.
,
Richardson
,
M.
, and
Kapat
,
J.
,
2017
, “
Characterization of Laser Additive Manufacturing-Fabricated Porous Superalloys for Turbine Components
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
102102
.10.1115/1.4035560
9.
Westerweel
,
J.
,
1997
, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), p.
1379
.10.1088/0957-0233/8/12/002
10.
Maas
,
H.
,
Gruen
,
A.
, and
Papantoniou
,
D.
,
1993
, “
Particle Tracking Velocimetry in Three-Dimensional Flows
,”
Exp. Fluids
,
15
(
2
), pp.
133
146
.10.1007/BF00190953
11.
Chen
,
X.
,
Zhong
,
W.
, and
Heindel
,
T. J.
,
2019
, “
Orientation of Cylindrical Particles in a Fluidized Bed Based on Stereo X-Ray Particle Tracking Velocimetry (XPTV)
,”
Chem. Eng. Sci.
, 203, pp.
104
112
.10.1016/j.ces.2019.03.067
12.
Kingston
,
T. A.
,
Geick
,
T. A.
,
Robinson
,
T. R.
, and
Heindel
,
T. J.
,
2015
, “
Characterizing 3D Granular Flow Structures in a Double Screw Mixer Using X-Ray Particle Tracking Velocimetry
,”
Powder Technol.
,
278
, pp.
211
222
.10.1016/j.powtec.2015.02.061
13.
Fouras
,
A.
,
Dusting
,
J.
,
Lewis
,
R.
, and
Hourigan
,
K.
,
2007
, “
Three-Dimensional Synchrotron X-Ray Particle Image Velocimetry
,”
J. Appl. Phys.
,
102
(
6
), p.
064916
.10.1063/1.2783978
14.
Kertzscher
,
U.
,
Seeger
,
A.
,
Affeld
,
K.
,
Goubergrits
,
L.
, and
Wellnhofer
,
E.
,
2004
, “
X-Ray Based Particle Tracking Velocimetry–A Measurement Technique for Multi-Phase Flows and Flows Without Optical Access
,”
Flow Meas. Instrum.
,
15
(
4
), pp.
199
206
.10.1016/j.flowmeasinst.2004.04.001
15.
Heindel
,
T. J.
,
2011
, “
A Review of X-Ray Flow Visualization With Applications to Multiphase Flows
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
074001
.10.1115/1.4004367
16.
Lau
,
Y.
,
Hampel
,
U.
, and
Schubert
,
M.
,
2018
, “
Ultrafast X-Ray Tomographic Imaging of Multiphase Flow in Bubble Columns—Part 1: Image Processing and Reconstruction Comparison
,”
Int. J. Multiphase Flow
,
104
, pp.
258
271
.10.1016/j.ijmultiphaseflow.2018.02.010
17.
Keplinger
,
O.
,
Shevchenko
,
N.
, and
Eckert
,
S.
,
2019
, “
Experimental Investigation of Bubble Breakup in Bubble Chains Rising in a Liquid Metal
,”
Int. J. Multiphase Flow.
,
116
, p.
39
.10.1016/j.ijmultiphaseflow.2019.03.027
18.
Chen
,
X.
,
Zhong
,
W.
, and
Heindel
,
T. J.
,
2019
, “
Using Stereo XPTV to Determine Cylindrical Particle Distribution and Velocity in a Binary Fluidized Bed
,”
AIChE J.
,
65
(
2
), pp.
520
535
.10.1002/aic.16485
19.
Heindel
,
T.
,
2018
, “
X-Ray Imaging Techniques to Quantify Spray Characteristics in the Near Field
,”
Atomization Sprays
,
28
(
11
), p.
1029
.10.1615/AtomizSpr.2019028797
20.
Duke
,
D.
,
Swantek
,
A.
,
Kastengren
,
A.
,
Fezzaa
,
K.
, and
Powell
,
C.
,
2015
, “
Recent Developments in X-Ray Diagnostics for Cavitation
,”
SAE Int. J. Fuels Lubr.
,
8
(
1
), pp.
135
146
.10.4271/2015-01-0918
21.
Im
,
K.-S.
,
Fezzaa
,
K.
,
Wang
,
Y.
,
Liu
,
X.
,
Wang
,
J.
, and
Lai
,
M.-C.
,
2007
, “
Particle Tracking Velocimetry Using Fast X-Ray Phase-Contrast Imaging
,”
Appl. Phys. Lett.
,
90
(
9
), p.
091919
.10.1063/1.2711372
22.
Fezzaa
,
K.
, and
Wang
,
Y.
,
2008
, “
Ultrafast X-Ray Phase-Contrast Imaging of the Initial Coalescence Phase of Two Water Droplets
,”
Phys. Rev. Lett.
,
100
(
10
), p.
104501
.10.1103/PhysRevLett.100.104501
23.
Greenfeld
,
I.
,
Fezzaa
,
K.
,
Rafailovich
,
M. H.
, and
Zussman
,
E.
,
2012
, “
Fast X-Ray Phase-Contrast Imaging of Electrospinning Polymer Jets: Measurements of Radius, Velocity, and Concentration
,”
Macromolecules
,
45
(
8
), pp.
3616
3626
.10.1021/ma300237j
24.
Lin
,
K.-C.
,
Rajnicek
,
C.
,
McCall
,
J.
,
Carter
,
C.
, and
Fezzaa
,
K.
,
2011
, “
Investigation of Pure-and Aerated-Liquid Jets Using Ultra-Fast X-Ray Phase Contrast Imaging
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
649
(
1
), pp.
194
196
.10.1016/j.nima.2010.11.122
25.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press,
Boca Raton, FL.
You do not currently have access to this content.