Abstract

Cryogenic liquid turbine expanders have been increasingly used in liquefied natural gas (LNG) production plants to save energy. However, high-pressure LNG commonly needs to be throttled to or near a two-phase state, which makes the LNG turbine expander more vulnerable to cavitation. Although some work has been reported on cryogenic turbomachine cavitation, no work has been reported on designing a cavitation-resistant two-phase LNG liquid turbine expander. Motivated by the urgent requirement for two-phase liquid turbine expanders, an effective design optimization method is developed that is well-suited for designing the cavitation-resistant two-phase liquid turbine expanders. A novel optimization objective function is constituted by characterizing the cavitating flow, in which the overall efficiency and local cavitation flow behavior are incorporated. The adaptive-Kriging surrogate model and cooperative coevolutionary algorithm (CCEA) are incorporated to solve the highly nonlinear design optimization problem globally and efficiently. The former maintains high-level prediction accuracy of the objective function but uses much reduced computational fluid dynamics (CFD) simulations while the later solves the complex optimization problem at a high convergence rate through decomposing them into some readily solved parallel subproblems. By means of the developed optimization method, the impeller and exducer blade geometries and their axial gap and circumferential indexing are fine-tuned. Consequently, cavitating flow in both the impeller and exducer of the two-phase LNG expander is effectively mitigated.

References

1.
Patel
,
V. P.
, and
Kimmel
,
H. E.
,
2011
, “
Fifteen Years of Field Experience in LNG Expander Technology
,”
Proceedings of the First Middle East Turbomachinery Symposium
, Doha, Qatar, Feb. 13–16.https://doi.org/10.21423/R1HK96
2.
Chiu
,
C. H.
, and
Kimmel
,
H. E.
,
2001
, “
Turbo-Expander Technology Development for LNG Plants
,”
The 13th International Conference & Exhibition on Liquefied Natural Gas
, Seoul, Korea, May 4–6, Po-37.http://www.ivt.ntnu.no/ept/fag/tep4215/innhold/LNG%20Conferences/2001/Data/POSTERSV/6EQUIPME/Po-37-ch.pdf
3.
Kimmel
,
H.
,
1997
, “
Speed Controlled Turbines for Power Recovery in Cryogenic and Chemical Processing
,”
World Pumps
,
1997
(
369
), pp.
46
49
.10.1016/S0262-1762(00)80137-6
4.
Hudson
,
H. M.
,
Wilkinson
,
J.
,
Cuellar
,
K.
, and
Pierce
,
M. C.
,
2003
, “
Integrated Liquids Recovery Technology Improves LNG Production Efficiency
,”
82nd Annual Convention of the Gas Processors Association
, San Antonio, TX, Mar. 11.https://www.o-rtloff.com/files/papers/GPA03LNG.pdf
5.
Johnson
,
L. L.
,
1998
, “
Improvement of Natural Gas Liquefaction Processes by Using Liquid Turbines
,”
Fuel Energy Abstr.
,
39
, pp.
1
51
.
6.
Haesloop
,
B.
, and
Kimmel
,
H.
,
1998
,
Improved Cryogenic Gas Processing Efficiency Due to Advancements in Liquid Turbine Expanders
,
American Institute of Chemical Engineers
,
New York
, Paper No. 42b.
7.
Habets
,
G.
, and
Kimmel
,
H.
,
1998
, “
Economics of Cryogenic Turbine Expanders
,”
Gas
,
1
(
4
), pp.
69
72
.
8.
Kimmel
,
H. E.
,
2011
, “
Cryogenic LNG Expanders Reduce Natural Gas Liquefaction Costs
,”
Natural Gas Logistics, Handling and Contracts
,
Bali, Indonesia
, July 18–22.http://www.ebaracryo.com/technical-papers/cryogenic-lng-expanders-reduce-natural-gas-liquefaction-costs/
9.
Medvitz
,
R. B.
,
Kunz
,
R. F.
,
Boger
,
D. A.
,
Lindau
,
J. W.
,
Yocum
,
A. M.
, and
Pauley
,
L. L.
,
2002
, “
Performance Analysis of Cavitating Flow in Centrifugal Pumps Using Multiphase CFD
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
377
383
.10.1115/1.1457453
10.
Moore
,
R. D.
, and
Ruggeri
,
R. S.
,
1969
, “
Method for Prediction of Pump Cavitation Performance for Various Liquids, Liquid Temperatures, and Rotative Speeds
,” NASA, Washington, Report No. TD-5292.
11.
Nelson
,
J. R.
, and
George
,
R.
,
1976
, “
Method and Apparatus for Preventing Pump Cavitation
,” U.S. Patent No.
3,981,618
.https://patents.google.com/patent/US3981618A/en
12.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
, and
Gibeling
,
H. J.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids.
,
29
(
8
), pp.
849
875
.10.1016/S0045-7930(99)00039-0
13.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
14.
Gerber
,
A. A.
,
2002
, “
CFD Model for Devices Operating Under Extensive Cavitation Conditions
,”
ASME
Paper No. IMECE2002-39315.10.1115/IMECE2002-39315
15.
Hosangadi
,
A.
,
Ahuja
,
V.
, and
Ungewitter
,
R.
,
2004
, “
Simulations of Cavitating Flows in Turbopumps
,”
J. Propul. Power
,
20
(
4
), pp.
604
611
.10.2514/1.2162
16.
Utturkar
,
Y.
,
Wu
,
J.
,
Wang
,
G.
, and
Shyy
,
W.
,
2005
, “
Recent Progress in Modeling of Cryogenic Cavitation for Liquid Rocket Propulsion
,”
Prog. Aerosp. Sci.
,
41
(
7
), pp.
558
608
.10.1016/j.paerosci.2005.10.002
17.
Hosangadi
,
A.
,
Ahuja
,
V.
,
Ungewitter
,
R. J.
, and
Busby
,
J.
,
2007
, “
Analysis of Thermal Effects in Cavitating Liquid Hydrogen Inducers
,”
J. Propul. Power
,
23
(
6
), pp.
1225
1234
.10.2514/1.28730
18.
Luo
,
X. X.
,
Zhang
,
Y.
,
Peng
,
J. Q.
, and
Xu
,
H. Y.
,
2008
, “
Effect of Impeller Inlet Geometry on Centrifugal Pump Cavitation Performance
,”
J. Tsinghua Univ. (Sci. Technol.)
,
5
, p.
018
.
19.
Kumar
,
P.
, and
Saini
,
R.
,
2010
, “
Study of Cavitation in Hydro Turbines—A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
374
383
.10.1016/j.rser.2009.07.024
20.
Goncalvès
,
E.
,
Patella
,
R. F.
,
Rolland
,
J.
,
Pouffary
,
B.
, and
Challier
,
G.
,
2010
, “
Thermodynamic Effect on a Cavitating Inducer in Liquid Hydrogen
,”
ASME J. Fluids Eng.
,
132
(
11
), p.
111305
.10.1115/1.4002886
21.
Yang
,
S.
,
Kong
,
F.
, and
Zhou
,
S.
,
2010
, “
Numerical Simulation and Analysis of Centrifugal Pump Cavitation
,”
J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.)
,
38
(
10
), pp.
93
95
.
22.
Tao
,
R.
,
Xiao
,
R. F.
,
Yang
,
W.
,
Wang
,
F. J.
, and
Liu
,
W. C.
,
2014
, “
Optimization for Cavitation Inception Performance of Pump-Turbine in Pump Mode Based on Genetic Algorithm
,”
Math. Probl. Eng.
,
2014
, pp.
1
9
.10.1155/2014/234615
23.
Hosangadi
,
A.
,
Ahuja
,
V.
,
Ungewitter
,
R. J.
, and
Busby
,
J.
,
2006
, “
Numerical Study of a Flat Plate Inducer: Comparison of Performance in Liquid Hydrogen and Water
,”
AIAA
Paper No. 2006–5070.10.2514/6.2006-5070
24.
Hosangadi
,
A.
,
Ahuja
,
V.
, and
Ungewitter
,
R. J.
,
2005
, “
Simulations of a Liquid Hydrogen Inducer at Low-Flow Off-Design Flow Conditions
,”
AIAA
Paper No. AIAA-2005-4450.10.2514/6.AIAA-2005-4450
25.
Jakobsen
,
J. K.
, and
Keller
,
J. R.
,
1971
, “
Liquid Rocket Engine Turbopump Inducers
,” NASA, Washington, Report No.
SP-8052
. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710025474.pdf
26.
Li
,
Y. J.
, and
Wang
,
F. J.
,
2007
, “
Numerical Investigation of Performance of an Axial-Flow Pump With Inducer
,”
J. Hydrodyn.
,
19
(
6
), pp.
705
711
.10.1016/S1001-6058(08)60007-4
27.
He
,
Z. L.
,
Ge
,
Y. Z.
,
Sun
,
J. J.
, and
Wang
,
K.
,
2012
, “
Numerical Study of Cavitating Behavior in a Cryogenic Liquid Turbine
,”
ASME
Paper No. GT2012-68774.10.1115/GT2012-68774
28.
Li
,
K. Q.
,
Sun
,
J. J.
,
Fu
,
J. T.
, and
Song
,
P.
,
2013
, “
Design and Numerical Flow Analysis of a LNG Power Recovery Turbine
,”
ASME
Paper No. GT2013-94900.10.1115/GT2013-94900
29.
Song
,
P.
,
Sun
,
J. J.
,
Li
,
K. Q.
,
Wang
,
K.
, and
Huo
,
C. J.
,
2016
, “
Numerical Study of Cavitating Flow in Two-Phase LNG Expander
,”
ASME
Paper No. GT2016-56780.10.1115/GT2016-56780
30.
ANSYS, Inc,
2009
, “CFX 12.1 Help Manual,” ANSYS, Canonsburg, PA.
31.
Utturkar
,
Y.
,
2005
, “
Computational Modeling of Thermodynamic Effects in Cryogenic Cavitation
,” Ph.D. thesis, University of Florida, Gainesville, FL.
32.
Walters
,
D. K.
, and
Cokljat
,
D.
,
2008
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121401
.10.1115/1.2979230
33.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.10.1155/S1023621X04000028
34.
Hosangadi
,
A.
, and
Ahuja
,
V.
,
2005
, “
Numerical Study of Cavitation in Cryogenic Fluids
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
267
281
.10.1115/1.1883238
35.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Model for Predicting Cavitation Dynamics
,”
Proceedings of the International Conference on Multiphase Flow (ICMF)
, Yokohama, Japan, May 30–June 3, Paper No. 152.https://www.researchgate.net/profile/Philip_Zwart/publication/306205415_A_two-phase_flow_model_for_predicting_cavitation_dynamics/links/5c73ee9e458515831f6e3d5f/A-two-phase-flow-model-for-predicting-cavitation-dynamics.pdf
36.
Hord
,
J.
,
1973
, “
Cavitation in Liquid Cryogens, II—Hydrofoil
,” NASA, Washington, Report No.
CR-2156
.https://ntrs.nasa.gov/search.jsp?R=19730007528
37.
Pierret
,
S.
, and
Van
,
D. B. R.
,
1999
, “
Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network
,”
ASME J. Turbomach
,
121
(
2
), pp.
326
332
.10.1115/1.2841318
38.
Pierret
,
S.
,
Coelho
,
R. F.
, and
Kato
,
H.
,
2006
, “
Multidisciplinary and Multiple Operating Points Shape Optimization of Three-Dimensional Compressor Blades
,”
Struct. Multidiscip Optim.
,
33
(
1
), pp.
61
70
.10.1007/s00158-006-0033-y
39.
Song
,
P.
,
Sun
,
J. J.
, and
Wang
,
K.
,
2014
, “
Axial Flow Compressor Blade Optimization Through Flexible Shape Tuning by Means of Cooperative Co-Evolution Algorithm and Adaptive Surrogate Model
,”
Proc. Inst. Mech. Eng., Part A
,
228
, pp.
782
798
.10.1177/0957650914541647
You do not currently have access to this content.