Abstract

This paper presents a new extension of the realizable Kε model that accounts for streamline curvature, system rotation, and surface roughness. The model is a type of realizable Kε model, but the transport equations and the eddy-viscosity damping functions are modified, based on the Richardson number and roughness height; the roughness correction covers both the transitional and fully rough regimes. Flows in a rotating channel and a U-bend duct are used to validate the response of the new model to the system rotation and streamline curvature. The flow in a plane channel and the flow over a dune are used to validate the roughness extension. Finally, a rotating channel with rough walls is studied, to test the new model when both rotation and roughness are present.

References

1.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
2.
Durbin
,
P. A.
, and
Pettersson Reif
,
B. A.
,
2011
,
Statistical Theory and Modeling for Turbulent Flows
, 2nd ed.,
Wiley
, West Sussex, UK.
3.
Durbin
,
P. A.
,
2011
, “
Review: Adapting Scalar Turbulence Closure Models for Rotation and Curvature
,”
ASME J. Fluids Eng.
,
133
(
6
), p.
061205
.10.1115/1.4004150
4.
Bradshaw
,
P.
,
1973
, “
Effects of Streamline Curvature on Turbulent Flow
,” Advisory Group for Aerospace Research and Development, Paris, France, Report No. AGARD-AG-169.
5.
Launder
,
B.
,
Priddin
,
C.
, and
Sharma
,
B.
,
1977
, “
The Calculation of Turbulent Boundary Layers on Spinning and Curved Surfaces
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
231
239
.10.1115/1.3448528
6.
Hellsten
,
A.
,
1998
, “
Some Improvements in Menter's k-Omega SST Turbulence Model
,”
AIAA
Paper No. 98-32817.10.2514/6.1998-2554
7.
Bardina
,
J.
,
Ferziger
,
J.
, and
Rogallo
,
R.
,
1985
, “
Effect of Rotation on Isotropic Turbulence: Computation and Modelling
,”
J. Fluid Mech.
,
154
, pp.
321
336
.10.1017/S0022112085001550
8.
Pettersson Reif
,
B. A.
,
Durbin
,
P. A.
, and
Ooi
,
A.
,
1999
, “
Modeling Rotational Effects in Eddy-Viscosity Closures
,”
Int. J. Heat Fluid Flow
,
20
(
6
), pp.
563
573
.10.1016/S0142-727X(99)00056-9
9.
Arolla
,
S. K.
, and
Durbin
,
P. A.
,
2013
, “
Modeling Rotation and Curvature Effects Within Scalar Eddy Viscosity Model Framework
,”
Int. J. Heat Fluid Flow
,
39
, pp.
78
89
.10.1016/j.ijheatfluidflow.2012.11.006
10.
Arolla
,
S. K.
, and
Durbin
,
P. A.
,
2014
, “
A Rotation/Curvature Correction for Turbulence Models for Applied CFD
,”
Prog. Comput. Fluid Dyn.
,
14
(
6
), pp.
341
351
.10.1504/PCFD.2014.065472
11.
Dhakal
,
T. P.
, and
Walters
,
D. K.
,
2011
, “
A Three-Equation Variant of the SST k-ω Model Sensitized to Rotation and Curvature Effects
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111201
.10.1115/1.4004940
12.
Spalart
,
P.
, and
Shur
,
M.
,
1997
, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
Aerosp. Sci. Technol.
,
1
(
5
), pp.
297
302
.10.1016/S1270-9638(97)90051-1
13.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart–Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), p.
041010
.10.1115/1.3070573
14.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
15.
Shih
,
T.-H.
,
Zhu
,
J.
, and
Lumley
,
J. L.
,
1995
, “
A New Reynolds Stress Algebraic Equation Model
,”
Comput. Methods Appl. Mech. Eng.
,
125
(
1–4
), pp.
287
302
.10.1016/0045-7825(95)00796-4
16.
Aupoix
,
B.
,
2015
, “
Roughness Corrections for the k–ω Shear Stress Transport Model: Status and Proposals
,”
ASME J. Fluids Eng.
,
137
(
2
), p.
021202
.10.1115/1.4028122
17.
Nikuradse
,
J.
,
1933
, “
Gesetzmäßigkeiten Der Turbulenten Strömung in Glatten Rohren (Nachtrag)
,”
Forschung im Ingenieurwesen
,
4
(
1
), pp.
44
44
.10.1007/BF02716946
18.
Krogstad
,
P.-A.
,
1991
, “
Modification of the Van Driest Damping Function to Include the Effects of Surface Roughness
,”
AIAA J.
,
29
(
6
), pp.
888
894
.10.2514/3.10675
19.
Zhang
,
H.
,
Faghri
,
M.
, and
White
,
F. M.
,
1996
, “
A New Low-Reynolds-Number k-ε Model for Turbulent Flow Over Smooth and Rough Surfaces
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
255
259
.10.1115/1.2817371
20.
Patel
,
V. C.
Rodi
,
W.
, and
Scheuerer
,
G.
,
1985
, “
Turbulence Models for Near-Wall and Low Reynolds Number Flows-a Review
,”
AIAA J.
,
23
(
9
), pp.
1308
1319
.10.2514/3.9086
21.
Durbin
,
P. A.
,
Medic
,
G.
,
Seo
,
J.-M.
,
Eaton
,
J.
, and
Song
,
S.
,
2001
, “
Rough Wall Modification of Two-Layer k- ε
,”
ASME J. Fluids Eng.
,
123
(
1
), pp.
16
21
.10.1115/1.1343086
22.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
23.
Hellsten
,
A.
, and
Laine
,
S.
,
1997
, “
Extension of the k ω SST Turbulence Model for Flows Over Rough Surfaces
,” AIAA Paper No. 1997-3577.
24.
Knopp
,
T.
,
Eisfeld
,
B.
, and
Calvo
,
J. B.
,
2009
, “
A New Extension for k–ω Turbulence Models to Account for Wall Roughness
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
54
65
.10.1016/j.ijheatfluidflow.2008.09.009
25.
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1993
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid Mech.
,
254
, pp.
59
78
.10.1017/S0022112093002034
26.
Girimaji
,
S. S.
,
1997
, “
A Galilean Invariant Explicit Algebraic Reynolds Stress Model for Turbulent Curved Flows
,”
Phys. Fluids
,
9
(
4
), pp.
1067
1077
.10.1063/1.869200
27.
Speziale
,
C. G.
,
1989
, “
Turbulence Modeling in Noninertial Frames of Reference
,”
Theor. Comput. Fluid Dyn.
,
1
(
1
), pp.
3
19
.10.1007/BF00271419
28.
Bradshaw
,
P.
,
Ferriss
,
D.
, and
Atwell
,
N.
,
1967
, “
Calculation of Boundary-Layer Development Using the Turbulent Energy Equation
,”
J. Fluid Mech.
,
28
(
03
), pp.
593
616
.10.1017/S0022112067002319
29.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
30.
Zhang
,
Y.
,
Bai
,
J.
,
Xu
,
J.
, and
Li
,
Y.
,
2016
, “
A One-Equation Turbulence Model for Recirculating Flows
,”
Sci. China Phys., Mech. Astron.
,
59
(
6
), p.
664701
.
31.
Wen
,
W.
,
Piomelli
,
U.
, and
Yuan
,
J.
,
2019
, “
Turbulence Statistics in Rotating Channel Flows With Rough Walls
,”
Int. J. Heat Fluid Flow
,
80
, p.
108467
.10.1016/j.ijheatfluidflow.2019.108467
32.
Hoyas
,
S.
, and
Jiménez
,
J.
,
2006
, “
Scaling of the Velocity Fluctuations in Turbulent Channels Up to R e τ=2003
,”
Phys. Fluids
,
18
, p.
011702
.10.1063/1.2162185
33.
Kristoffersen
,
R.
, and
Andersson
,
H. I.
,
1993
, “
Direct Simulations of Low-Reynolds-Number Turbulent Flow in a Rotating Channel
,”
J. Fluid Mech.
,
256
, pp.
163
197
.10.1017/S0022112093002757
34.
Brethouwer
,
G.
,
2005
, “
The Effect of Rotation on Rapidly Sheared Homogeneous Turbulence and Passive Scalar Transport. Linear Theory and Direct Numerical Simulation
,”
J. Fluid Mech.
,
542
(
1
), pp.
305
342
.10.1017/S0022112005006427
35.
Abid
,
R.
,
1993
, “
Evaluation of Two-Equation Turbulence Models for Predicting Transitional Flows
,”
Int. J. Eng. Sci.
,
31
(
6
), pp.
831
840
.10.1016/0020-7225(93)90096-D
36.
Ligrani
,
P. M.
, and
Moffat
,
R. J.
,
1986
, “
Structure of Transitionally Rough and Fully Rough Turbulent Boundary Layers
,”
J. Fluid Mech.
,
162
(
1
), pp.
69
98
.10.1017/S0022112086001933
37.
Zhang
,
Y.-S.
,
Bi
,
W.-T.
,
Hussain
,
F.
, and
She
,
Z.-S.
,
2014
, “
A Generalized Reynolds Analogy for Compressible Wall-Bounded Turbulent Flows
,”
J. Fluid Mech.
,
739
, pp.
392
420
.10.1017/jfm.2013.620
38.
Chen
,
X.
,
Hussain
,
F.
, and
She
,
Z.-S.
,
2017
, “
Predictions of Canonical Wall-Bounded Turbulent Flows Via a Modified k–ω Equation
,”
J. Turbul.
,
18
(
1
), pp.
1
35
.10.1080/14685248.2016.1243244
39.
Wu
,
B.
,
Bi
,
W.
,
Hussain
,
F.
, and
She
,
Z.-S.
,
2017
, “
On the Invariant Mean Velocity Profile for Compressible Turbulent Boundary Layers
,”
J. Turbul.
,
18
(
2
), pp.
186
202
.10.1080/14685248.2016.1269911
40.
Rotta
,
J. C.
,
1962
, “
Turbulent Boundary Layers in Incompressible Flows
,”
Prog. Aerosp. Sci.
,
2
(
1
), pp.
1
95
.10.1016/0376-0421(62)90014-3
41.
Aupoix
,
B.
, and
Spalart
,
P.
,
2003
, “
Extensions of the Spalart–Allmaras Turbulence Model to Account for Wall Roughness
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
454
462
.10.1016/S0142-727X(03)00043-2
42.
Grison
,
C.
,
1992
, “
Drag Losses of New Ships Caused by Hull Finish
,”
JSR
, 36(2), pp.
182
196
.
43.
Kim
,
J.
, and
Moin
,
P.
,
1985
, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
59
(
2
), pp.
308
323
.10.1016/0021-9991(85)90148-2
44.
Silva Lopes
,
A.
,
Piomelli
,
U.
, and
Palma
,
J. M. L. M.
,
2006
, “
Large-Eddy Simulation of the Flow in an S-Duct
,”
J. Turbul.
,
7
, pp.
11
1
24
.10.1080/14685240500331900
45.
Lopes
,
A. S.
,
Palma
,
J.
, and
Castro
,
F.
,
2007
, “
Simulation of the Askervein Flow—Part 2: Large-Eddy Simulations
,”
Boundary-Layer Meteorol.
,
125
(
1
), pp.
85
108
.10.1007/s10546-007-9195-4
46.
Omidyeganeh
,
M.
, and
Piomelli
,
U.
,
2011
, “
Large-Eddy Simulation of Two-Dimensional Dunes in a Steady, Unidirectional Flow
,”
J. Turbul.
,
12
, pp.
N42
N31
.10.1080/14685248.2011.609820
47.
Mansour
,
N. N.
,
Kim
,
J.
, and
Moin
,
P.
,
1988
, “
Reynolds-Stress and Dissipation-Rate Budgets in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
194
(
1
), pp.
15
44
.10.1017/S0022112088002885
48.
Wilcox
,
D. C.
,
1993
,
Turbulence Modeling for CFD
, Vol.
2
,
DCW Industries, La Canada
,
CA
.
49.
Monson
,
D.
,
Seegmiller
,
H.
, and
McConnaughey
,
P.
,
1990
, “
Comparison of Experiment With Calculations Using Curvature-Corrected Zero and Two Equation Turbulence Models for a Two-Dimensional U-Duct
,”
AIAA
Paper No. 90-1484.10.2514/6.1990-1484
50.
York
,
W. D.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2009
, “
A Simple and Robust Linear Eddy-Viscosity Formulation for Curved and Rotating Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
,
19
(
6
), pp.
745
776
.10.1108/09615530910972995
51.
Scotti
,
A.
,
2006
, “
Direct Numerical Simulation of Turbulent Channel Flows With Boundary Roughened With Virtual Sandpaper
,”
Phys. Fluids
,
18
(
3
), p.
031701
.10.1063/1.2183806
52.
Balachandar
,
R.
, and
Patel
,
V.
,
2008
, “
Flow Over a Fixed Rough Dune
,”
Can. J. Civ. Eng.
,
35
(
5
), pp.
511
520
.10.1139/L08-004
53.
Van Mierlo
,
M.
, and
De Ruiter
,
J.
,
1988
, “
Turbulence Measurements Above Artificial Dunes
,” Delft Hydraulics, Delft, The Netherlands, Report No. Q0789.
54.
Yoon
,
J.
, and
Patel
,
V.
,
1996
, “
Numerical Model of Turbulent Flow Over Sand Dune
,”
J. Hydraul. Eng.
,
122
(
1
), pp.
10
18
.10.1061/(ASCE)0733-9429(1996)122:1(10)
You do not currently have access to this content.