This study uses novel methods, combining discrete element method (DEM) simulations for packing and computational fluid dynamics (CFD) modeling of fluid flow, to simulate the pressure drop across rigid, randomly packed beds of spheres ranging from 1 to 3 mm in diameter, with porosities between 0.34 and 0.45. This modeling approach enables the combined effect of void fraction and particle size to be studied in more depth than that has been previously possible and is used to give insight into the ability of the well-established Ergun equation to predict the pressure drop behavior. The resulting predictions for pressure drop as a function of superficial velocity were processed to yield coefficients α and β in the Ergun equation and were found to be in keeping with equivalent data in the literature. Although the scatter in α with structural variations was very small, the scatter in β was large (±20%), leading to inaccuracies when used to predict pressure drop data at velocities beyond the Darcy regime. Evaluation of the packed particle structures showed that regions of poor packing, in samples with high porosity and large particle sizes, lead to lower β values. The findings bring strong support to the belief that a generalized model, such as that by Ergun, cannot yield a unique value for β, even for identical spheres.

References

1.
Muskat
,
M.
, and
Botset
,
H. G.
,
1931
, “
Flow of Gas Through Porous Materials
,”
Physics
1
(
1
), pp.
27
47
.
2.
Harker
,
J. H.
,
Richardson
,
J. F.
, and
Backhurst
,
J. R.
,
2002
, Chemical Engineering, Vol. 2, Elsevier Science and Technology, Oxford, UK.
3.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.https://www.scribd.com/document/306554469/Fluid-Flow-Through-Packed-Columns-Ergun
4.
Carman
,
P. C.
,
1956
, “
Fluid Flow Through Granular Beds
,”
Chem. Eng. Res. Des: Trans. Inst. Chem. Eng., Part A
,
15
, pp.
415
421
.
5.
Rahil
,
O.
,
Tadrist
,
L.
,
Miscevic
,
M.
, and
Santini
,
R.
,
1997
, “
Fluid Flow Through Randomly Packed Monodisperse Fibers: The Kozeny-Carman Parameter Analysis
,”
ASME J. Fluids Eng.
,
119
(
1
), pp.
188
192
.
6.
Montillet
,
A.
,
2004
, “
Flow Through a Finite Packed Beds of Sphere: A Note on the Limit of Applicability of the Forchheimer-Type Equation
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
139
143
.
7.
Eisenklam
,
P.
,
1956
, “
Porous Masses
,”
Chemical Engineering Practise
, H. W. Cremer and T. Davies, eds., Vol. 2, Butterworths, London, pp. 342–463.
8.
Heijs
,
A. W. J.
, and
Lowe
,
C. P.
,
1995
, “
Numerical Evaluation of the Permeability and Kozeny Constant for Two Types of Porous Media
,”
Phys. Rev., ESI
,
51
(
5
), p.
4346
.
9.
Karimian
,
S. A. M.
, and
Straatman
,
A. G.
,
2008
, “
CFD Study of the Hydraulic & Thermal Behaviour of Spherical -Void-Phase Porous Materials
,”
Int. J. Heat Fluid Flow
,
29
, pp.
292
305
.
10.
Fand
,
R. M.
, and
Thinakaran
,
R.
,
1990
, “
The Influence of the Wall on Flow Through Pipes Packed With Spheres
,”
ASME J. Fluids Eng.
,
112
(
1
), pp.
84
88
.
11.
Macdonald
,
I. F.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
,
1979
, “
Flow Through Porous Media: The Ergun Equation Revisited
,”
Ind. Eng. Chem. Fundam.
,
18
(
3
), pp.
199
208
.
12.
Plessis
,
P. J. D.
, and
Woudberg
,
S.
,
2008
, “
Pore-Scale Derivation of the Ergun Equation to Enhance Its Adaptability and Generalization
,”
Chem. Eng. Sci.
,
63
, pp.
2576
2586
.
13.
Dudgeon
,
C. R.
,
1966
, “
An Experimental Study of the Flow of Water Through Coarse Granular Media
,”
Houille Blanche
,
21
, p.
785
.https://www.shf-lhb.org/articles/lhb/pdf/1966/07/lhb1966049.pdf
14.
Allen
,
K. G.
,
von Backström
,
T. W.
, and
Kröger
,
D. G.
,
2013
, “
Packed Bed Pressure Dependence on Particle Shape, Size Distribution, Packing Arrangement and Roughness
,”
Powder Technol.
,
246
, pp.
590
600
.
15.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, 3rd ed.,
McGraw-Hill
,
New York
.
16.
Carter
,
T. J.
,
Tanner
,
C.
, and
Hawkes
,
D. J.
,
2015
, “
A Comparison of Linear and Quadratic Tetrahedral Finite Elements for Image-Guided Surgery Application
,” Centre for Medical Image Computing, University College London, London.
17.
Lage
,
J. L.
,
Krueger
,
P. S.
, and
Narasimham
,
A.
,
2005
, “
Protocol for Measuring Permeability and Form Coefficient of Porous Media
,”
Phys. Fluids
,
17
, p.
088101
.
18.
Li
,
S.
,
Zhou
,
L.
,
Yang
,
J.
, and
Wang
,
Q.
,
2018
, “
Numerical Simulation of Flow and Heat Transfer in Structured Packed Beds With Smooth or Dimpled Spheres at Low Channels to Particle Diameter Ratio
,”
Energies
,
11
(
4
), p.
937
.
19.
Gunjal
,
P. R.
,
Ranade
,
V. V.
, and
Chaudhari
,
R. V.
,
2005
, “
Computational Study of a Single-Phase Flow in Packed Beds of Spheres
,”
AIChE J.
,
51
(
2
), pp.
365
378
.
20.
Guo
,
X.
, and
Dai
,
R.
,
2010
, “
Numerical Simulation of Flow and Heat Transfer in a Random Packed Bed
,”
Particuology
,
8
(
3
), pp.
293
299
.
21.
Dorai
,
F.
,
Teixeira
,
M. C.
,
Rolland
,
M.
,
Climent
,
E.
,
Marcoux
,
M.
, and
Wachs
,
A.
,
2015
, « “
Fully Resolved Simulations of the Flow Through a Packed Bed of Cylinders: Effect of Size Distribution
,”
Chem. Eng. Sci.
,
129
, pp.
180
192
.
22.
Langston
,
P.
, and
Kennedy
,
A. R.
,
2014
, “
Discrete Element Modelling of the Packing of Spheres & its Application to the Structure of Porous Metals Made by Infiltration of Packed Beds of NaCl Beads
,”
Powder Technol.
,
268
, pp.
210
218
.
23.
Otaru
,
A. J.
, and
Kennedy
,
A. R.
,
2016
, “
The Permeability of Virtual Macroporous Structures Generated by Sphere Packing Models: Comparison With Analytical Models
,”
Scr. Mater.
,
124
, pp.
30
33
.
24.
Otaru
,
A. J.
,
2018
, “
Fluid Flow and Acoustic Absorption in Porous Metallic Structures Using Numerical Simulation and Experimentation
,” Ph.D. thesis, The University of Nottingham, Nottingham, UK.
25.
Otaru
,
A. J.
,
Morvan
,
H. P.
, and
Kennedy
,
A. R.
,
2018
, “
Measurement and Simulation of Pressure Drop Across Replicated Microcellular Aluminium in the Darcy-Forchheimer Regime
,”
Acta Mater.
,
149
, pp.
265
275
.
26.
Otaru
,
A. J.
,
Morvan
,
H. P.
, and
Kennedy
,
A. R.
,
2018
, “
Modelling and Optimisation of Sound Absorption in Replicated Microcellular Metals
,”
Scr. Mater.
,
150
, pp.
152
155
.
27.
Schneiders
,
R.
,
2000
, “
Octree-Based Hexahedral Mesh Generation
,”
Int. J. Comput. Geom. Appl.
,
10
(
04
), pp.
383
398
.
28.
Otaru
,
A. J.
,
2019
, “
Enhancing the Sound Absorption Performance of Porous Metals Using Tomography Images
,”
Appl. Acoust.
,
143
, pp.
183
189
.
29.
Duggirala
,
R. K.
,
Roy
,
C. J.
,
Saeidi
,
S. M.
,
Khodadadi
,
J. M.
,
Cahela
,
D. R.
, and
Tatarchuk
,
B. J.
,
2008
, “
Pressure Drop Predictions in Microfibrous Materials Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
130
(
7
), pp.
1
13
.
30.
Otaru
,
A. J.
,
Morvan
,
H. P.
, and
Kennedy
,
A. R.
,
2019
, “
Airflow Measurement Across Negatively Infiltration Processed Porous Aluminium Structures
,”
AIChE J.
(epub). https://onlinelibrary.wiley.com/doi/full/10.1002/aic.16523
31.
Sidiropoulou
,
M. G.
,
Moutsopoulos
,
K. N.
, and
Tsihrintzis
,
V. A.
,
2007
, “
Determination of Forchheimer Equation Coefficients a and b
,”
Hydrol. Process
,
21
(
4
), pp.
534
554
.
32.
Ozahi
,
E. O.
,
Gundogdu
,
M. Y.
, and
Carpinlioglu
,
M. O.
,
2007
, “
A Modification on Ergun's Correlation for Use in Cylindrical Packed Beds With Non-Spherical Particles
,”
Adv. Powder Technol.
,
19
(
4
), pp.
369
381
.
You do not currently have access to this content.