Modeling a dilute suspension of particles in a polykinetic Eulerian framework is described using the conditional quadrature method of moments (CQMOM). The particular regimes of interest are multiphase flows comprised of particles with diameters small compared to the smallest length scale of the turbulent carrier flow and particle material densities much larger than that of the fluid. These regimes correspond to moderate granular Knudsen number and large particle Stokes numbers in which interparticle collisions and/or particle trajectory crossing (PTC) can be significant. The probability density function (PDF) of the particle velocity space is discretized with a two-point quadrature, the minimum resolution required to capture PTC which is common to these flows. Both two-dimensional (2D) test cases (designed to assess numerical procedures) and a three-dimensional (3D) fully developed particle-laden turbulent channel flow were implemented for collisionless particles. The driving gas-phase carrier flow is computed using direct numerical simulation of the incompressible Navier–Stokes (N–S) equations and one-way coupled to the particle phase via the drag force. Visualizations and statistical descriptors demonstrate that CQMOM predicts physical features such as PTC, particle accumulation near the channel walls, and more uniform particle velocity profiles relative to the carrier flow. The improvements in modeling compared to monokinetic representations are highlighted.

References

1.
Gad-El-Hak
,
M.
,
2006
, “
Gas and Liquid Transport at the Microscale
,”
Heat Transfer Eng.
,
27
(
4
), pp.
13
29
.
2.
Fox
,
R. O.
,
2012
, “
Large-Eddy-Simulation Tools for Multiphase Flows
,”
Fluid Mech.
,
44
(
1
), pp.
47
76
.
3.
Yuan
,
C.
, and
Fox
,
R. O.
,
2011
, “
Conditional Quadrature Method of Moments for Kinetic Equations
,”
J. Comput. Phys.
,
230
(
22
), pp.
8216
8246
.
4.
Fox
,
R. O.
,
2008
, “
A Quadrature-Based Third-Order Moment Method for Dilute Gas-Particle Flows
,”
J. Comput. Phys.
,
227
(
12
), pp.
6313
6350
.
5.
Marchisio
,
D. L.
,
Vigil
,
R. D.
, and
Fox
,
R. O.
,
2002
, “
Quadrature Method of Moments for Aggregation-Breakage Processes
,”
J. Colloid Interface Sci.
,
258
(
2
), pp.
322
334
.
6.
Marchisio
,
D. L.
, and
Fox
,
R. O.
,
2013
,
Computational Models for Polydisperse Particulate and Multiphase Systems
,
Cambridge University Press
,
Cambridge, UK
.
7.
McGraw
,
R.
,
1997
, “
Description of Aerosol Dynamics by the Quadrature Method of Moments
,”
Aerosol Sci. Technol.
,
27
(
2
), pp.
255
265
.
8.
Fox
,
R. O.
,
Laurent
,
F.
, and
Massot
,
M.
,
2008
, “
Numerical Simulation of Spray Coalescence in an Eulerian Framework: Direct Quadrature Method of Moments and Multi-Fluid Method
,”
J. Comput. Phys.
,
227
(
6
), pp.
3058
3088
.
9.
Buffo
,
A.
,
Vanni
,
M.
, and
Marchisio
,
D.
,
2011
, “
Multidimensional Population Balance Model for the Simulation of Turbulent Gas-Liquid Systems in Stirred Tank Reactors
,”
Chem. Eng. Sci.
,
70
, pp.
31
44
.
10.
Buffo
,
A.
,
Vanni
,
M.
,
Marchisio
,
D. L.
, and
Fox
,
R. O.
,
2013
, “
Multivariate Quadrature-Based Moments Methods for Turbulent Polydisperse Gas-Liquid Systems
,”
Int. J. Multiphase Flow
,
50
, pp.
41
57
.
11.
Petitti
,
M.
,
Vanni
,
M.
,
Marchisio
,
D. L.
,
Buffo
,
A.
, and
Podenzani
,
F.
,
2013
, “
Simulation of Coalescence, Break-Up and Mass Transfer in a Gas-Liquid Stirred Tank With CQMOM
,”
Chem. Eng. J.
,
228
, pp.
1182
1194
.
12.
Yuan
,
C.
,
Kong
,
B.
,
Passalacqua
,
A.
, and
Fox
,
R. O.
,
2014
, “
An Extended Quadrature-Based Mass-Velocity Moment Model for Polydisperse Bubbly Flows
,”
Can. J. Chem. Eng.
,
92
(
12
), pp.
2053
2066
.
13.
Kah
,
D.
,
Laurent
,
F.
,
Fréret
,
L.
,
de Chaisemartin
,
S.
,
Fox
,
R. O.
,
Reveillon
,
J.
, and
Massot
,
M.
,
2010
, “
Eulerian Quadrature-Based Moment Models for Dilute Polydisperse Evaporating Sprays
,”
Flow, Turbul. Combust.
,
85
(
3
), pp.
649
676
.
14.
Marchisio
,
D. L.
,
Vigil
,
R. D.
, and
Fox
,
R. O.
,
2003
, “
Implementation of the Quadrature Method of Moments in CFD Codes for Aggregation-Breakage Problems
,”
Chem. Eng. Sci.
,
58
(
15
), pp.
3337
3351
.
15.
Marchisio
,
D. L.
, and
Fox
,
R. O.
,
2005
, “
Solution of Population Balance Equations Using the Direct Quadrature Method of Moments
,”
J. Aerosol Sci.
,
36
(
1
), pp.
43
73
.
16.
Mazzei
,
L.
,
Marchisio
,
D. L.
, and
Lettieri
,
P.
,
2012
, “
New Quadrature-Based Moment Method for the Mixing of Inert Polydisperse Fluidized Powders in Commercial CFD Codes
,”
Am. Inst. Chem. Eng.
,
58
(
10
), pp.
3054
3069
.
17.
Vié
,
A.
,
Masi
,
E.
,
Simonin
,
O.
, and
Massot
,
M.
,
2012
, “
On the Direct Numerical Simulation of Moderate-Stokes-Number Turbulent Particulate Flows Using Algebraic-Closure-Based and Kinetic-Based Moment Methods
,” Center for Turbulence Research, Summer Program 2012, July 1.
18.
Crowe
,
C.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
1998
,
Multiphase Flows With Droplets and Particles
,
CRC Press
,
Boca Raton
.
19.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.
20.
Février
,
P.
,
Simonin
,
O.
, and
Squires
,
K. D.
,
2005
, “
Partitioning of Particle Velocities in Gas-Solid Turbulent Flows Into a Continuous Field and a Spatially Uncorrelated Random Distribution: Theoretical Formalism and Numerical Study
,”
J. Fluid Mech.
,
533
, pp.
1
46
.
21.
Beylich
,
A. E.
,
2000
, “
Solving the Kinetic Equation for All Knudsen Numbers
,”
Phys. Fluids
,
12
(
2
), pp.
444
465
.
22.
Bird
,
G. A.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
, Vol.
42
,
Clarendon Press
,
Oxford, UK
.
23.
Fox
,
R. O.
,
2009
, “
Higher-Order Quadrature-Based Moment Methods for Kinetic Equations
,”
J. Comput. Phys.
,
228
(
20
), pp.
7771
7791
.
24.
Emre
,
O.
,
Kah
,
D.
,
Jay
,
S.
,
Tran
,
Q.-H.
,
Velghe
,
A.
,
Chaisemartin
,
S. D.
,
Fox
,
R. O.
,
Laurent
,
F.
, and
Massot
,
M.
,
2014
, “
Eulerian Moment Methods for Automotive Sprays
,”
Atomization Sprays
,
25
(
3
), pp.
189
254
.
25.
Fox
,
R. O.
, and
Vedula
,
P.
,
2010
, “
Quadrature-Based Moment Model for Moderately Dense Polydisperse Gas-Particle Flows
,”
Ind. Eng. Chem. Res.
,
49
(
11
), pp.
5174
5187
.
26.
Vance
,
M. W.
, and
Squires
,
K. D.
,
2002
, “
An Approach to Parallel Computing in an Eulerian–Lagrangian Two-Phase Flow Model
,” ASME Paper No. FEDSM2002-31225.
27.
Wang
,
Q.
, and
Squires
,
K. D.
,
1996
, “
Large Eddy Simulation of Particle-Laden Turbulent Channel Flow
,”
Phys. Fluids
,
8
(
5
), pp.
1207
1223
.
28.
Mallouppas
,
G.
, and
van Wachem
,
B.
,
2013
, “
Large Eddy Simulations of Particle-Laden Turbulent Channel Flow
,”
Int. J. Multiphase Flow
,
54
, pp.
65
75
.
29.
Vance
,
M. W.
,
Squires
,
K. D.
, and
Simonin
,
O.
,
2006
, “
Properties of the Particle Velocity Field in Gas-Solid Turbulent Channel Flow
,”
Phys. Fluids
,
18
(
6
), p.
063302
.
30.
Kuerten
,
J. G. M.
,
2006
, “
Subgrid Modeling in Particle-Laden Channel Flow
,”
Phys. Fluids
,
18
(
2
), p.
025108
.
31.
Arcen
,
B.
,
Tanière
,
A.
, and
Oesterlé
,
B.
,
2006
, “
On the Influence of Near-Wall Forces in Particle-Laden Channel Flows
,”
Int. J. Multiphase Flow
,
32
(
12
), pp.
1326
1339
.
32.
Capecelatro
,
J.
, and
Desjardins
,
O.
,
2013
, “
An Euler–Lagrange Strategy for Simulating Particle-Laden Flows
,”
J. Comput. Phys.
,
238
, pp.
1
31
.
33.
Bardow
,
A.
,
Karlin
,
I. V.
, and
Gusev
,
A. A.
,
2008
, “
Multispeed Models in Off-Lattice Boltzmann Simulations
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
,
77
(
2 Pt 2
), p.
025701
.
34.
Kalarakis
,
A.
,
Michalis
,
V.
,
Skouras
,
E.
, and
Burganos
,
V.
,
2012
, “
Mesoscopic Simulation of Rarefied Flow in Narrow Channels and Porous Media
,”
Trans. Porous Media
,
94
(
1
), pp.
385
398
.
35.
Harting
,
J.
,
Frijters
,
S.
,
Ramaioli
,
M.
,
Robinson
,
M.
,
Wolf
,
D. E.
, and
Luding
,
S.
,
2014
, “
Recent Advances in the Simulation of Particle-Laden Flows
,”
Eur. Phys. J. Spec. Top.
,
223
(
11
), pp.
2253
2267
.
36.
Laurent
,
F.
,
Massot
,
M.
, and
Villedieu
,
P.
,
2004
, “
Eulerian Multi-Fluid Modeling for the Numerical Simulation of Coalescence in Polydisperse Dense Liquid Sprays
,”
J. Comput. Phys.
,
194
(
2
), pp.
505
543
.
37.
Fréret
,
L.
,
Laurent
,
F.
,
de Chaisemartin
,
S.
,
Kah
,
D.
,
Fox
,
R. O.
,
Vedula
,
P.
,
Reveillon
,
J.
,
Thomine
,
O.
, and
Massot
,
M.
,
2009
, “
Turbulent Combustion of Polydisperse Evaporating Sprays With Droplet Crossing: Eulerian Modeling of Collisions at Finite Knudsen and Validation
,” Center for Turbulence Research, Summer Program 2008.
38.
Fan
,
R.
,
Marchisio
,
D. L.
, and
Fox
,
R. O.
,
2004
, “
Application of the Direct Quadrature Method of Moments to Polydisperse Gas-Solid Fluidized Beds
,”
Powder Technol.
,
139
(
1
), pp.
7
20
.
39.
Donde
,
P.
,
Koo
,
H.
, and
Raman
,
V.
,
2012
, “
A Multivariate Quadrature Based Moment Method for LES Based Modeling of Supersonic Combustion
,”
J. Comput. Phys.
,
231
(
17
), pp.
5805
5821
.
40.
Desjardins
,
O.
,
Fox
,
R. O.
, and
Villedieu
,
P.
,
2008
, “
A Quadrature-Based Moment Method for Dilute Fluid-Particle Flows
,”
J. Comput. Phys.
,
227
(
4
), pp.
2514
2539
.
41.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
APS J.
,
94
(
3
), pp.
511
252
.
42.
Mazzei
,
L.
,
2008
, “
Eulerian Modelling and Computational Fluid Dynamics Simulation of Mono and Polydisperse Fluidized Suspensions
,” Ph.D. thesis, Department of Chemical Engineering, University College London, London, UK.
43.
Wheeler
,
J. C.
,
1974
, “
Modified Moments and Gaussian Quadratures
,”
Rocky Mt. J. Math
,
4
(
2
), pp.
287
296
.
44.
Gordon
,
R. G.
,
1968
, “
Error Bounds in Equilibrium Statistical Mechanics
,”
J. Math. Phys.
,
9
(
5
), pp.
655
663
.
45.
Marchisio
,
D. L.
,
Pikturna
,
J. T.
,
Fox
,
R. O.
,
Vigil
,
R. D.
, and
Barresi
,
A. A.
,
2003
, “
Quadrature Method of Moments for Population-Balance Equations
,”
Am. Inst. Chem. Eng.
,
49
(
5
), pp.
1266
1276
.
46.
John
,
V.
, and
Thein
,
F.
,
2012
, “
On the Efficiency and Robustness of the Core Routine of the Quadrature Method of Moments (QMOM)
,”
Chem. Eng. Phys.
,
75
, pp.
327
333
.
47.
Mazzei
,
L.
,
2011
, “
Limitations of Quadrature-Based Moment Methods for Modeling Inhomogeneous Polydisperse Fluidized Powders
,”
Chem. Eng. Sci.
,
66
(
16
), pp.
3628
3640
.
48.
Fox
,
R. O.
,
2009
, “
Optimal Moment Sets for Multivariate Direct Quadrature Method of Moments
,”
Ind. Eng. Chem. Res.
,
48
(
21
), pp.
9686
9696
.
49.
Vikas
,
V.
,
Wang
,
Z. J.
,
Passalacqua
,
A.
, and
Fox
,
R. O.
,
2011
, “
Realizable High-Order Finite-Volume Schemes for Quadrature-Based Moment Methods
,”
J. Comput. Phys.
,
230
(
13
), pp.
5328
5352
.
50.
Passalacqua
,
A.
,
Fox
,
R. O.
,
Garg
,
R.
, and
Subramaniam
,
S.
,
2010
, “
A Fully Coupled Quadrature-Based Moment Method for Dilute to Moderately Dilute Fluid-Particle Flows
,”
Chem. Eng. Sci.
,
65
(
7
), pp.
2267
2283
.
51.
LeVeque
,
R. J.
,
2002
,
Finite Volume Methods for Hyperbolic Problems
,
Cambridge University Press
,
New York
.
52.
Chalons
,
C.
,
Kah
,
D.
, and
Massot
,
M.
,
2012
, “
Beyond Pressureless Gas Dynamics: Quadrature-Based Velocity Moment Models
,”
Commun. Math. Sci.
,
10
(
4
), pp.
1241
1272
.
53.
Vié
,
A.
,
Chalons
,
C.
,
Fox
,
R. O.
,
Laurent
,
F.
, and
Massot
,
M.
,
2011
, “
A Multi-Gaussian Quadrature Method of Moments for Simulating High Stokes Number Turbulent Two-Phase Flows
,” Annual Research Briefs 2011.
54.
Laurent
,
F.
,
Vie
,
A.
,
Chalons
,
C.
,
Fox
,
R.
, and
Massot
,
M.
,
2012
, “
A Hierarchy of Eulerian Models for Trajectory Crossing in Particle-Laden Turbulent Flows Over a Wide Range of Stokes Numbers
,” Center for Turbulence Research Annual Research Briefs, pp.
193
204
.
You do not currently have access to this content.