The current work presents a mathematical model to simulate “viscoplastic fluid hammer”-overpressure caused by sudden viscoplastic fluid deceleration in pipelines. The flow is considered one-dimensional, isothermal, laminar, and weakly compressible and the fluid is assumed to behave as a Bingham plastic. The model is based on the mass and momentum balance equations and solved by the method of characteristics (MOC). The results show that the overpressures taking place in viscoplastic fluids are smaller than those occurring in Newtonian fluids and also that two pressure gradients-one negative and one positive-are possibly noted after pressure stabilization. The pressure stabilizes nonuniformly on the pipeline because viscoplastic fluids present yield stresses. Overpressure magnitudes depend not only on the ratio of pressure wave inertia to viscous effect but also on the Bingham number. The pipeline designer should take into account the viscoplastic fluid behavior reported in this paper when engineering a new pipeline system.

References

1.
Streeter
,
V. L.
, and
Wylie
,
E. B.
,
1974
, “
Waterhammer and Surge Control
,”
Annu. Rev. Fluid Mech.
,
6
, pp.
57
73
.
2.
Mitsoulis
,
E.
,
2007
, “
Flows of Viscoplastic Materials: Models and Computations
,”
Rheol. Rev.
, pp.
135
178
.
3.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.
4.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Tijsseling
,
A. S.
,
2006
, “
Water Hammer With Column Separation: A Historical Review
,”
J. Fluids Struct.
,
22
(
2
), pp.
135
171
.
5.
Brunone
,
B.
,
Karney
,
B. W.
,
Mecarelli
,
M.
, and
Ferrante
,
M.
,
2000
, “
Velocity Profiles and Unsteady Pipe Friction in Transient Flow
,”
ASCE J. Water Resour. Plann. Manage.
,
126
(
4
), pp.
236
244
.
6.
Brunone
,
B.
,
Ferrante
,
M.
, and
Cacciamani
,
M.
,
2004
, “
Decay of Pressure and Energy Dissipation in Laminar Transient Flow
,”
ASME J. Fluid. Eng.
,
126
(
6
), pp.
928
934
.
7.
Wahba
,
E. M.
,
2013
, “
Non-Newtonian Fluid Hammer in Elastic Circular Pipes: Shear-Thinning and Shear-Thickening Effects
,”
J. Non-Newtonian Fluid Mech.
,
198
, pp.
24
30
.
8.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
, 2nd ed., Vol.
1
,
Wiley
,
New York
, Chap. 2.
9.
Oliveira
,
G. M.
,
Negrão
,
C. O. R.
, and
Franco
,
A. T.
,
2012
, “
Pressure Transmission in Bingham Fluids Compressed Within a Closed Pipe
,”
J. Non-Newtonian Fluid Mech.
,
169–170
, pp.
121
125
.
10.
Sestak
,
J.
,
Cawkwell
,
M. G.
,
Charles
,
M. E.
, and
Houskas
,
M.
,
1987
, “
Start-Up of Gelled Crude Oil Pipelines
,”
J. Pipelines
,
6
(
1
), pp.
15
24
.
11.
Cawkwell
,
M. G.
, and
Charles
,
M. E.
,
1987
, “
An Improved Model for Start-Up of Pipelines Containing Gelled Crude Oil
,”
J. Pipelines
,
7
(
1
), pp.
41
52
.
12.
Chang
,
C.
,
Rønningsen
,
H. P.
, and
Nguyen
,
Q. D.
,
1999
, “
Isothermal Start-Up of Pipeline Transporting Waxy Crude Oil
,”
J. Non-Newtonian Fluid Mech.
,
87
(
2–3
), pp.
127
154
.
13.
Davidson
,
M. R.
,
Nguyen
,
Q. D.
,
Chang
,
C.
, and
Rønningsten
,
H. P.
,
2004
, “
A Model for Restart of a Pipeline With Compressible Gelled Waxy Crude Oil
,”
J. Non-Newtonian Fluid Mech.
,
123
(
2–3
), pp.
269
280
.
14.
Oliveira
,
G. M.
,
Rocha
,
L. L. V.
,
Franco
,
A. T.
, and
Negrão
,
C. O. R.
,
2010
, “
Numerical Simulation of the Start-Up of Bingham Fluid Flows in Pipelines
,”
J. Non-Newtonian Fluid Mech.
,
165
(19–20), pp.
1114
1128
.
15.
Vinay
,
G.
,
Wachs
,
A.
, and
Agassant
,
J. F.
,
2006
, “
Numerical Simulation of Weakly Compressible Bingham Flows: The Restart of Pipeline Flows of Waxy Crude Oils
,”
J. Non-Newtonian Fluid Mech.
,
136
(
2–3
), pp.
93
105
.
16.
Vinay
,
G.
,
Wachs
,
A.
, and
Frigaard
,
I.
,
2007
, “
Start-Up Transients and Efficient Computation of Isothermal Waxy Crude Oil Flows
,”
J. Non-Newtonian Fluid Mech.
,
143
(2–3), pp.
141
156
.
17.
Wachs
,
A.
,
Vinay
,
G.
, and
Frigaard
,
I.
,
2009
, “
A 1.5d Numerical Model for the Start Up of Weakly Compressible Flow of a Viscoplastic and Thixotropic Fluid in Pipelines
,”
J. Non-Newtonian Fluid Mech.
,
159
(
1–3
), pp.
81
94
.
18.
Negrão
,
C. O. R.
,
Franco
,
A. T.
, and
Rocha
,
L. L. V.
,
2011
, “
A Weakly Compressible Flow Model for the Restart of Thixotropic Drilling Fluids
,”
J. Non-Newtonian Fluid Mech.
,
166
(
23–24
), pp.
1369
1381
.
19.
Anderson
,
J. D.
,
1990
,
Modern Compressible Flow: With Historical Perspective
, 2nd ed.,
McGraw-Hill
,
New York
, Chaps. 1 and 3.
20.
Swamee
,
P. K.
, and
Aggarwal
,
N.
,
2011
, “
Explicit Equations for Laminar Flow of Bingham Plastic Fluids
,”
J. Pet. Sci. Eng.
,
76
(
3–4
), pp.
178
184
.
21.
Melrose
,
J. C.
,
Savins
,
J. G.
,
Foster
,
W. R.
, and
Parisha
,
E. R.
,
1958
, “
A Practical Utilization of the Theory of Bingham Plastic Flow in Stationary Pipes and Annuli
,”
Pet. Trans. AIME
,
213
, pp.
316
324
.
22.
Wylie
,
E. B.
,
Streeter
,
V. L.
, and
Suo
,
L.
,
1993
,
Fluid Transients in Systems
,
Prentice Hall
,
NJ
, Chap. 3.
23.
Wahba
,
E. M.
,
2008
, “
Modeling the Attenuation of Laminar Fluid Transients in Piping Systems
,”
Appl. Math. Modell.
,
32
(
12
), pp.
2863
2871
.
24.
Oliveira
,
G. M.
,
Franco
,
A. T.
,
Negrão
,
C. O. R.
,
Martins
,
A. L.
, and
Silva
,
R. A.
,
2013
, “
Modeling and Validation of Pressure Propagation in Drilling Fluids Pumped Into a Closed Well
,”
J. Pet. Sci. Eng.
,
103
, pp.
61
71
.
25.
Holmboe
,
E. L.
, and
Rouleau
,
W. T.
,
1967
, “
The Effect of Viscous Shear on Transients in Liquid Lines
,”
ASME J. Basic Eng.
,
89
(
1
), pp.
174
180
.
26.
Sobey
,
R. J.
,
2004
, “
Analytical Solutions for Unsteady Pipe Flow
,”
J. Hydroinf.
,
6
, pp.
187
207
.
You do not currently have access to this content.