The estimation of water droplet impingement is the first step toward a complete ice accretion assessment. Numerical approaches are usually implied to support the experimental testing and to provide fast responses when designing ice protection systems. Basically, two different numerical methodologies can be found in literature: Lagrangian and Eulerian. The present paper describes the design and development of a tool based on a Eulerian equation set solved on Cartesian meshes by using an immersed boundary (IB) technique. The tool aims at computing the evolution of a droplet cloud and the impingement characteristics onto the exposed surfaces of an aircraft. The robustness of the methodology and the accuracy of the approach are discussed. The method is applying to classical two- and three-dimensional test cases for which experimental data are available in literature. The results are compared with both experiments and body-fitted numerical solutions.

References

1.
Extice project website, June 2009, http://extice.cira.it/
2.
Wright
,
W.
,
1995
, Users Manual for the Improved NASA Lewis Ice Accretion Code LEWICE 1.6. CR 198355, NASA Glenn Research Center, Cleveland, OH.
3.
Hedde
,
T.
, and
Guffond
,
D.
,
1993
, “
Improvement of the ONERA 3-D Icing Code, Comparison With 3D Experimental Shapes
,” AIAA Paper No. 93-0169.
4.
Gent
,
R. W.
,
1990
, “
Trajice2—A Combined Water Droplet and Ice Accretion Prediction Code for Airfoils
,” Royal Aerospace Establishment, Tech. Report No. TR90054, Farnborough, UK.
5.
Mingione
,
G.
, and
Brandi
,
V.
,
1998
, “
Ice Accretion Prediction on Multielement Airfoils
,”
J. Aircraft
,
35
(
2
), pp.
240
246
.10.2514/2.2290
6.
Crowe
,
C. T.
,
1982
, “
Review—Numerical Models for Dilute Gas-Particle Flows
,”
ASME J. Fluids Eng.
,
104
, pp.
297
303
.10.1115/1.3241835
7.
Durst
,
F.
,
Milojevic
,
D.
, and
Schonung
,
B.
,
1984
, “
Eulerian and Lagrangian Predictions of Particulate Two-Phase Flows: A Numerical Study
,”
Appl. Math. Model.
,
8
, pp.
101
115
.10.1016/0307-904X(84)90062-3
8.
Di Giacinto
,
M.
,
Sabetta
,
F.
, and
Piva
,
R.
,
1982
, “
Two-Way Coupling Effects in Dilute Gas-Particle Flows
,”
ASME J. Fluids Eng.
,
104
, pp.
304
312
.10.1115/1.3241836
9.
Sabetta
,
F.
,
Piva
,
R.
, and
Di Giacinto
,
M.
,
1976
, “
Navier Stokes Flows With Suspended Particles: Mathematical Modelling and Numerical Simulation
,”
Theoretical and Applied Mechanics, Proceedings of the Fourteenth International Congress, Delft, The Netherlands
, August 30–September 4, North-Holland Publishing Co., Amsterdam, The Netherlands, pp.
425
438
.
10.
Bourgault
,
Y.
,
Habashi
,
W. G.
,
Dompierre
,
J.
, and
Baruzzi
,
G.
,
1999
, “
A Finite Element Method Study of Eulerian Droplets Impingement Models
,”
Int. J. Num. Meth. Fluids
,
29
, pp.
429
449
.10.1002/(SICI)1097-0363(19990228)29:4<429::AID-FLD795>3.0.CO;2-F
11.
Morency
,
F.
,
Beaugendre
,
H.
, and
Habashi
,
W.
,
2003
, “
Fensap-Ice: A study of Effects of Ice Shapes on Droplets Impingement
,” AIAA Paper No. 2003-1223.
12.
Iuliano
,
E.
,
Brandi
,
V.
,
Mingione
,
G.
,
de Nicola
,
C.
, and
Tognaccini
,
R.
,
2006
, “
Water Impingement Prediction on Multi-Element Airfoils by Means of Eulerian and Lagrangian Approach With Viscous and Inviscid Air Flow
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2006-1270.
13.
Capizzano
,
F.
,
2011
, “
Turbulent Wall Model for Immersed Boundary Methods
,”
AIAA J.
,
49
(
11
), pp.
2367
2381
.10.2514/1.J050466
14.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Computat. Phys.
,
161
, pp.
35
60
.10.1006/jcph.2000.6484
15.
Tseng
,
Y. H.
, and
Ferziger
,
J. H.
,
2003
, “
A Ghost-Cell Immersed Boundary Method for Flow in Complex Geometry
,”
J. Computat. Phys.
,
192
, pp.
593
623
.10.1016/j.jcp.2003.07.024
16.
Yang
,
J.
, and
Balaras
,
E.
,
2006
, “
An Embedded-Boundary Formulation for Large-Eddy Simulation of Turbulent Flows Interacting With Moving Boundaries
,”
J. Computat. Phys.
,
215
, pp.
12
40
.10.1016/j.jcp.2005.10.035
17.
Iuliano
,
E.
,
Mingione
,
G.
,
Domenico
,
F. D.
, and
de Nicola
,
C.
,
2010
, “
An Eulerian Approach to Three-Dimensional Droplet Impingement Simulation in Icing Environment
,”
AIAA Atmospheric and Space Environments Conference
, Toronto, Ontario, Canada, AIAA Paper No. 2010-7677.
18.
Crowe
,
C.
,
Sommerfeld
,
M.
, and
Tsuij
,
Y.
,
1998
,
Multiphase Flows With Droplets and Particles
,
CRC Press
, Boca Raton, FL.
19.
Schiller
,
L.
, and
Naumann
,
A.
,
1933
, “
Uber die grundlegenden berechnungen bei der schwekraftaubereitung
,”
Zeitschrift des Vereines Deutscher Ingenieure
,
77
(
12
), pp.
318
320
.
20.
Hirsch
,
C.
,
1990
,
The Numerical Computation of Internal and External Flows
, Vol.
1–2
,
John Wiley & Sons
,
Chichester, West Sussex, UK
.
21.
Capizzano
,
F.
,
2007
, “
A Compressible Flow Simulation System Based on Cartesian Grids With Anisotropic Refinements
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2007-1450.
22.
Ham
,
F. E.
,
Lien
,
F. S.
, and
Strong
,
A.
,
2002
, “
A Cartesian Grid Method With Transient Anisotropic Adaptation
,”
J. Computat. Phys.
,
179
, pp.
469
494
.10.1006/jcph.2002.7067
23.
Mavriplis
,
D. J.
,
2003
, “
Revisiting the Least-Squares Procedure for Gradient Reconstruction on Unstructured Meshes
,” NASA, NIA Report No. 2003-06.
24.
Catalano
,
P.
, and
Amato
,
M.
,
2003
, “
An Evaluation of RANS Turbulence Modeling for Aerodynamic Applications
,”
Aerosp. Sc. Tech.
,
7
(
7
), pp.
493
590
.10.1016/S1270-9638(03)00061-0
25.
Papadakis
,
M.
,
Hung
,
K.
,
Vu
,
G.
,
Yeong
,
H. W.
,
Bidwell
,
C.
,
Breer
,
M.
, and
Bencic
,
T.
,
2002
, “
Experimental Investigation of Water Droplet Impingement on Airfoils, Finite Wings and an S-Duct Engine Inlet
,” NASA, Report No. Nasa–tm–2002-211700.
26.
Bidwell
,
C.
, and
Papadakis
,
M.
,
2005
, “
Collection Efficiency and Ice Accretion Characteristics of Two Full Scale and One 1/4 Scale Business Jet Horizontal Tails
,” NASA, Report No. Nasa–tm–2005-213653.
You do not currently have access to this content.