Fluidized beds are common equipment in many process industries. Knowledge of the hydrodynamics within a fluidized bed on the local scale is important for the improvement of scale-up and process efficiencies. This knowledge is lacking due to limited observational technologies at the local scale. This paper uses X-ray computed tomography (CT) imaging to describe the local time-average gas holdup differences of annular hydrodynamic structures that arise through axisymmetric annular flow in a 10.2 cm and 15.2 cm diameter cold flow fluidized bed. The aeration scheme used is similar to that provided by a porous plate and hydrodynamic results can be directly compared. Geldart type B glass bead, ground walnut shell, and crushed corncob particles were studied at various superficial gas velocities. Assuming axisymmetry, the local 3D time-average gas holdup data acquired through X-ray CT imaging was averaged over concentric annuli, resulting in a 2D annular and time-average gas holdup map. These gas holdup maps show that four different types of annular hydrodynamic structures occur in the fluidized beds of this study: zones of (1) aeration jetting, (2) bubble coalescence, (3) bubble rise, and (4) particle shear. Changes in the superficial gas velocities, bed diameters, and bed material densities display changes in these zones. The 2D gas holdup maps provide a benchmark that can be used by computational fluid dynamic (CFD) users for the direct comparisons of 2D models, assuming axisymmetric annular flow.

References

1.
Grace
,
J. R.
, 2006, “
Hydrodynamics of Fluidized Beds
,”
Multiphase Flow Handbook
,
C. T.
Crowe
, ed.,
CRC Press
,
Boca Raton
.
2.
Dudukovic
,
M. P.
,
Larachi
,
F.
, and
Mills
,
P. L.
, 1999, “
Multiphase Reactors—Revisited
,”
Chem. Eng. Sci.
,
54
(
13–14
), pp.
1975
1995
.
3.
Zhu
,
J.
, and
Cheng
,
Y.
, 2006, “
Fluidized-Bed Reactors and Applications
,”
Multiphase Flow Handbook
,
C. T.
Crowe
, ed.,
CRC Press
,
Boca Raton
.
4.
Oka
,
S.
, and
Anthony
,
E. J.
, 2004,
Fluidized Bed Combustion
,
Marcel Dekker
,
New York
.
5.
Knowlton
,
T. M.
,
Karri
,
S. B. R.
, and
Issangya
,
A.
, 2005, “
Scale-Up of Fluidized-Bed Hydrodynamics
,”
Powder Technol
,
150
(
2
), pp.
72
77
.
6.
Krambeck
,
F. J.
,
Avidan
,
A. A.
,
Lee
,
C. K.
, and
Lo
,
M. N.
, 1987, “
Predicting Fluid-Bed Reactor Efficiency Using Adsorbing Gas Tracers
,”
AIChE J.
,
33
(
10
), pp.
1727
1734
.
7.
Squires
,
A. M.
,
Kwauk
,
M.
, and
Avidan
,
A. A.
, 1985, “
Fluid Beds: At Last, Challenging Two Entrenched Practices
,”
Science
,
230
(
4732
), pp.
1329
1337
.
8.
Deza
,
M.
,
Franka
,
N. P.
,
Heindel
,
T. J.
, and
Battaglia
,
F.
, 2009, “
CFD Modeling and X-Ray Imaging of Biomass in a Fluidized Bed
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111303
.
9.
Deza
,
M.
,
Battaglia
,
F.
, and
Heindel
,
T. J.
, 2011, “
Effects of Mixing Using Side Port Air Injection on a Biomass Fluidized Bed
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111302
.
10.
Min
,
J.
,
Drake
,
J. B.
,
Heindel
,
T. J.
, and
Fox
,
R. O.
, 2010, “
Experimental Validation of CFD Simulations of a Lab-Scale Fluidized-Bed Reactor With and Without Side-Gas Injection
,”
AIChE J.
,
56
(
6
), pp.
1434
1446
.
11.
Geldart
,
D.
, and
Xie
,
H. Y.
, 1992, “
Use of Pressure Probes in Fluidized Beds of Group A Powders
,”
Proceedings of the 7th Engineering Foundation Conference on Fluidization
, Brisbane, Australia, pp.
749
749
.
12.
Du
,
B.
,
Warsito
,
W.
, and
Fan
,
L.-S.
, 2005, “
ECT Studies of Gas-Solid Fluidized Beds of Different Diameters
,”
Ind. Eng. Chem. Res.
,
44
(
14
), pp.
5020
5030
.
13.
Drake
,
J. B.
, and
Heindel
,
T. J.
, 2011, “
The Repeatability and Uniformity of 3D Fluidized Beds
,”
Powder Technol.
,
213
(
1–3
), pp.
148
154
.
14.
Patel
,
A. K.
,
Waje
,
S. S.
,
Thorat
,
B. N.
, and
Mujumdar
,
A. S.
, 2008, “
Tomographic Diagnosis of Gas Maldistribution in Gas-Solid Fluidized Beds
,”
Powder Technol.
,
185
(
3
), pp.
239
250
.
15.
Dechsiri
,
C.
,
Ghione
,
A.
,
Van De Wiel
,
F.
,
Dehling
,
H. G.
,
Paans
,
A. M. J.
, and
Hoffmann
,
A. C.
, 2005, “
Positron Emission Tomography Applied to Fluidization Engineering
,”
Can. J. Chem. Eng.
,
83
(
1
), pp.
88
96
.
16.
Heindel
,
T. J.
, 2011, “
A Review of X-Ray Flow Visualization With Applications to Multiphase Flows
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
074001
.
17.
Kantzas
,
A.
,
Wright
,
I.
,
Bhargava
,
A.
,
Li
,
F.
, and
Hamilton
,
K.
, 2001, “
Measurement of Hydrodynamic Data of Gas-Phase Polymerization Reactors Using Non-Intrusive Methods
,”
Catal. Today
,
64
(
3–4
), pp.
189
203
.
18.
Franka
,
N. P.
, and
Heindel
,
T. J.
, 2009, “
Local Time-Averaged Gas Holdup in a Fluidized Bed With Side Air Injection Using X-Ray Computed Tomography
,”
Powder Technol.
,
193
(
1
), pp.
69
78
.
19.
Drake
,
J. B.
, and
Heindel
,
T. J.
, 2011, “
Local Time-Average Gas Holdup Comparisons in Cold Flow Fluidized Beds With Side-Air Injection
,”
Chem. Eng. Sci.
,
68
(
1
), pp.
157
165
.
20.
Escudero
,
D.
, and
Heindel
,
T. J.
, 2011, “
Bed Height and Material Density Effects on Fluidized Bed Hydrodynamics
,”
Chem. Eng. Sci.
,
66
(
16
), pp.
3648
3655
.
21.
Geldart
,
D.
, and
Baeyens
,
J.
, 1985, “
Design of Distributors for Gas-Fluidized Beds
,”
Powder Technol.
,
42
(
1
), pp.
67
78
.
22.
Geldart
,
D.
, 1973, “
Types of Gas Fluidization
,”
Powder Technol.
,
7
(
5
), pp.
285
292
.
23.
Heindel
,
T. J.
,
Gray
,
J. N.
, and
Jensen
,
T. C.
, 2008, “
An X-Ray System for Visualizing Fluid Flows
,”
Flow Meas. Instrum.
,
19
(
2
), pp.
67
78
.
24.
Franka
,
N. P.
, 2008, “
Visualizing Fluidized Beds With X-Rays
,” M.S. thesis, Iowa State University, Ames, IA.
25.
Soria-Verdugo
,
A.
,
Garcia-Gutierrez
,
L. M.
,
Sanchez-Delgado
,
S.
, and
Ruiz-Rivas
,
U.
, 2011, “
Circulation of an Object Immersed in a Bubbling Fluidized Bed
,”
Chem. Eng. Sci.
,
66
(
1
), pp.
78
87
.
26.
Panneerselvam
,
R.
,
Savithri
,
S.
, and
Surender
,
G. D.
, 2009, “
CFD Simulation of Hydrodynamics of Gas-Liquid-Solid Fluidised Bed Reactor
,”
Chem. Eng. Sci.
,
64
(
6
), pp.
1119
1135
.
27.
Pallares
,
D.
, and
Johnsson
,
F.
, 2006, “
A Novel Technique for Particle Tracking in Cold 2-Dimensional Fluidized Beds—Simulating Fuel Dispersion
,”
Chem. Eng. Sci.
,
61
(
8
), pp.
2710
2720
.
You do not currently have access to this content.