Parameter optimization is an excellent path for easily raising the resolution efficiency of compact finite differencing schemes. Their low-resolution errors are attractive for resolving the fine-scale turbulent physics even in complex flow domains with difficult boundary conditions. Most schemes require optimizing closure stencils at and adjacent to the domain boundaries. But these constituents can potentially degrade the local resolution errors and destabilize the final solution scheme. Current practices optimize and analyze each participating stencil separately, which incorrectly quantifies their local resolution errors. The proposed process optimizes each participant simultaneously. The result is a composite template that owns consistent spatial resolution properties throughout the entire computational domain. Additionally, the optimization technique leads to templates that are numerically stable as understood by an eigenvalue analysis. Finally, the predictive accuracy of the optimized schemes are evaluated using four canonical test problems that involve resolving linear convection, nonlinear Burger wave, turbulence along a flat plate, and circular cylinder wall pressure.

1.
Lele
,
S. K.
, 1992, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
0021-9991,
103
, pp.
16
42
.
2.
Kim
,
J. W.
, 2007, “
Optimized Boundary Compact Finite Difference Schemes for Computational Aeroacoustics
,”
J. Comput. Phys.
0021-9991,
225
(
1
), pp.
995
1019
.
3.
Rogallo
,
R.
, and
Moin
,
P.
, 1984, “
Numerical Simulation of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
16
, pp.
99
137
.
4.
Jordan
,
S. A.
, 2007, “
The Spatial Resolution Properties of Composite Compact Finite Differencing
,”
J. Comput. Phys.
0021-9991,
221
, pp.
558
576
.
5.
Jordan
,
S. A.
, 2008, “
Understanding the Boundary Stencil Effects on the Adjacent Field Resolution in Compact Finite Differences
,”
ASME J. Fluids Eng.
0098-2202,
130
, p.
074502
.
6.
Tam
,
C. K. W.
, and
Webb
,
J. C.
, 1993, “
Dispersion-Relation-Preserving Schemes for Computational Acoustics
,”
J. Comput. Phys.
0021-9991,
107
, pp.
262
281
.
7.
Ashcroft
,
G.
, and
Zhang
,
X.
, 2003, “
Optimized Prefactored Compact Schemes
,”
J. Comput. Phys.
0021-9991,
190
(
2
), pp.
459
477
.
8.
Hixon
,
R.
, and
Turkel
,
E.
, 1998, “
High-Accuracy Compact MacCormack-Type Schemes for Computational Aeroacoustics
,” Report No. NASA/CR-1998-208672.
9.
Hixon
,
R.
, 2000, “
Prefactored Small Stencil Compact Schemes
,”
J. Comput. Phys.
0021-9991,
165
, pp.
522
541
.
10.
Popescu
,
M.
,
Wei
,
S.
, and
Garbey
,
M.
, 2005, “
Finite Volume Treatment of Dispersion-Relation-Preserving and Optimized Prefactored Compact Schemes for Wave Propagation
,”
J. Comput. Phys.
0021-9991,
210
(
2
), pp.
705
729
.
11.
Carpenter
,
M. H.
,
Gottlieb
,
D.
, and
Abarbanel
,
S.
, 1993, “
The Stability of Numerical Boundary Treatments for Compact High-Order Finite-Difference Schemes
,”
J. Comput. Phys.
0021-9991,
108
, pp.
272
295
.
12.
Gustafsson
,
B.
,
Kreiss
,
H. -O.
, and
Sundstrom
,
A.
, 1972, “
Stability Theory of Difference Approximations for Mixed Initial Boundary-Value Problems II
,”
Math. Comput.
0025-5718,
26
, pp.
649
686
.
13.
Demuren
,
A. O.
,
Wilson
,
R. V.
, and
Carpenter
,
M.
, 2001, “
Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows, Part 1: Theoretical Development
,”
Numer. Heat Transfer, Part B
1040-7790,
103
, pp.
207
230
.
14.
Cook
,
A. W.
, and
Riley
,
J. J.
, 1996, “
Direct Numerical Simulation of a Turbulent Reactive Plume on a Parallel Computer
,”
J. Comput. Phys.
0021-9991,
129
(
2
), pp.
263
283
.
15.
Sengupta
,
T. K.
,
Ganerlwal
,
G.
, and
De
,
S.
, 2003, “
Analysis of Central and Upwind Compact Schemes
,”
J. Comput. Phys.
0021-9991,
192
(
2
), pp.
677
694
.
16.
Ladeinde
,
F.
,
Xiaodan
,
C.
,
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
, 2001, “
Turbulence Spectra Characteristics of High Order Schemes for Direct and Large Eddy Simulations
,”
Appl. Numer. Math.
0168-9274,
36
, pp.
447
474
.
17.
Gustafsson
,
B.
, 1975, “
Highly Accurate Compact Implicit Methods and Boundary Conditions
,”
Math. Comput.
0025-5718,
29
(
130
), pp.
396
406
.
18.
Abarbanel
,
S. S.
, and
Chertock
,
A. E.
, 2000, “
Strict Stability of High-Order Compact Implicit Finite-Difference Schemes: The Role of Boundary Conditions for Hyperbolic PDEs, I
,”
J. Comput. Phys.
0021-9991,
160
, pp.
42
66
.
19.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
, 1998, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
0021-9991,
140
, pp.
233
258
.
20.
Jordan
,
S. A.
, 2003, “
Resolving Turbulent Wakes
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
823
834
.
21.
Jordan
,
S. A.
, 2005, “
A Priori Assessments of Numerical Uncertainty in Large-Eddy Simulations
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
1171
1182
.
22.
Hinze
,
J. O.
, 1975,
Turbulence
,
McGraw-Hill
,
New York
.
23.
Spalart
,
P. R.
, 1988, “
Direct Simulation of a Turbulent Boundary Layer Up To Reθ=1410
,”
J. Fluid Mech.
0022-1120,
187
, pp.
61
98
.
24.
De Graaff
,
D. B.
, and
Eaton
,
J. K.
, 2000, “
Reynolds Number Scaling of the Flat Plate Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
422
, pp.
319
346
.
25.
Abraham
,
B. M.
, and
Keith
,
W. L.
, 1998, “
Direct Measurements of Turbulent Boundary Layer Wall Pressure Wavenumber-Frequency Spectra
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
29
39
.
26.
Norberg
,
C.
, 1998, “
LDV-Measurements in the Near Wake of a Circular Cylinder
,” ASME Paper No. FEDSM98-521.
27.
Mansy
,
H.
,
Yang
,
P.
, and
Williams
,
D. R.
, 1990, “
Quantitative Measurements of Three-Dimensional Structures in the Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
270
, pp.
277
296
.
You do not currently have access to this content.