We perform direct numerical simulations of the flow past a circular cylinder undergoing a one-degree-of-freedom transverse oscillation. The displacement follows a sine function raised to an arbitrary integer power ranging from 1 to 8. When the displacement power is above 2, we have multifrequency oscillation, and the number of Fourier components in the oscillation increases with the power, but they are either odd or even multiples of the input (argument) frequency of the displacement function. We study the responses of the nondimensional lift and drag under these different oscillation profiles and the transfer of nondimensional mechanical energy due to the oscillation, and their trends as the power (hence the number of Fourier components in the oscillation) increases. For odd powers, the energy is transferred to the cylinder; whereas for even powers, it is transferred to the flow. A unity power (harmonic oscillation) corresponds to the maximum energy transfer to the cylinder, which can explain the occurrence of this profile in the case when the cylinder is free to oscillate due to the vortex-induced vibration (VIV) phenomenon. The lift exhibits a mean value only with even powers above 2. The results show that the lift is driven to a large extent by the acceleration of the oscillation rather than its velocity. This should be considered when modeling the fluid-structure coupling in reduced-order VIV models.

1.
Anagnostopoulos
,
P.
, and
Bearman
,
P. W.
, 1992, β€œ
Response Characteristics of a Vortex-Excited Cylinder at Low Reynolds Numbers
,”
J. Fluids Struct.
0889-9746,
6
, pp.
39
–
50
.
2.
Gharib
,
M. R.
,
Shiels
,
D.
,
Gharib
,
G.
,
Leonard
,
A.
, and
Roshko
,
A.
, 1997, β€œ
Exploration of Flow-Induced Vibration at Low Mass and Damping
,”
Proceedings of the Fourth International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration & Noise
, Dallas, TX, Vol.
1
, pp.
75
–
81
.
3.
Fujarra
,
A. L. C.
,
Meneghini
,
J. R.
,
Pesce
,
C. P.
, and
Parra
,
P. H. C. C.
, 1998, β€œ
An Investigation of Vortex-Induced Vibration of a Circular Cylinder in Water
,”
Proceedings of the First Bluff Body Wakes and Vortex-Induced Vibrations Conference and ASME FEDSM
, Washington, DC.
4.
Zhou
,
C. Y.
,
So
,
R. M. C.
, and
Lam
,
K.
, 1999, β€œ
Vortex-Induced Vibrations of an Elastic Circular Cylinder
,”
J. Fluids Struct.
0889-9746,
13
, pp.
165
–
189
.
5.
Blackburn
,
H. M.
,
Govardhan
,
R. N.
, and
Williamson
,
C. H. K.
, 2001, β€œ
A Complementary Numerical and Physical Investigation of Vortex-Induced Vibration
,”
J. Fluids Struct.
0889-9746,
15
, pp.
481
–
488
.
6.
Shiels
,
D.
,
Leonard
,
A.
, and
Roshko
,
A.
, 2001, β€œ
Flow-Induced Vibration of a Circular Cylinder at Limiting Structural Parameters
,”
J. Fluids Struct.
0889-9746,
15
, pp.
3
–
21
.
7.
Prasanth
,
T. K.
, and
Mittal
,
S.
, 2008, β€œ
Vortex-Induced Vibrations of a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
594
, pp.
463
–
491
.
8.
Pantazopoulos
,
M. S.
, 1994, β€œ
Vortex-Induced Vibration Parameters: Critical Review
,”
Proc. 13th Int. Conf. on Offshore Mech. & Arctic Eng.
, Houston, TX,
1
, pp.
199
–
255
.
9.
Khalak
,
A.
, and
Williamson
,
C. H. K.
, 1999, β€œ
Motions, Forces, and Mode Transitions in Vortex-Induced Vibrations at Low Mass-Damping
,”
J. Fluids Struct.
0889-9746,
13
(
7–8
), pp.
813
–
851
.
10.
Vikestad
,
K.
,
Vandiver
,
J. K.
, and
Larsen
,
C. M.
, 2000, β€œ
Added Mass and Oscillation Frequency for a Circular Cylinder Subjected to Vortex-Induced Vibrations and External Disturbance
,”
J. Fluids Struct.
0889-9746,
14
, pp.
1071
–
1088
.
11.
Griffin
,
O. M.
,
Skop
,
R. A.
, and
Koopmann
,
G. H.
, 1973, β€œ
The Vortex-Excited Resonant Vibrations of Circular Cylinders
,”
J. Sound Vib.
0022-460X,
31
(
2
), pp.
235
–
249
.
12.
Iwan
,
W. D.
, and
Blevins
,
R. D.
, 1974, β€œ
A Model for Vortex Induced Oscillation of Structures
,”
ASME J. Appl. Mech.
0021-8936,
41
(
3
), pp.
581
–
586
.
13.
Di Silvio
,
G.
,
Angrilli
,
F.
, and
Zanardo
,
A.
, 1975, β€œ
Fluidelastic Vibrations: Mathematical Model and Experimental Result
,”
Meccanica
0025-6455,
10
(
4
), pp.
269
–
279
.
14.
Staubli
,
T.
, 1983, β€œ
Calculation of the Vibration of an Elastically Mounted Cylinder Using Experimental Data From Forced Vibration
,”
ASME J. Fluids Eng.
0098-2202,
105
(
2
), pp.
225
–
229
.
15.
Mureithi
,
N. W.
,
Goda
,
S.
, and
Kanki
,
H.
, 2001, β€œ
A Nonlinear Dynamics Analysis of Vortex-Structure Interaction Models
,”
ASME J. Pressure Vessel Technol.
0094-9930,
123
(
4
), pp.
475
–
479
.
16.
Leontini
,
J. S.
,
Stewart
,
B. E.
,
Thompson
,
M. C.
, and
Hourigan
,
K.
, 2006, β€œ
Predicting Vortex-Induced Vibration From Driven Oscillation Results
,”
Appl. Math. Model.
0307-904X,
30
, pp.
1096
–
1102
.
17.
Meneghini
,
J. R.
, and
Bearman
,
P. W.
, 1996, β€œ
Numerical Simulation of the Interaction Between the Shedding of Vortices and Square-Wave Oscillations Applied to a Circular Cylinder
,”
Second International Conference on Hydrodynamics
, Hong Kong, Vol.
2
, pp.
785
–
790
.
18.
Hartlen
,
R. T.
, and
Currie
,
I. G.
, 1970, β€œ
Lift-Oscillator Model of Vortex Vibration
,”
J. Eng. Mech.
0733-9399,
96
, pp.
577
–
591
.
19.
Krenk
,
S.
, and
Nielsen
,
S. R. K.
, 1999, β€œ
Energy Balanced Double Oscillator Model for Vortex-Induced Vibrations
,”
J. Eng. Mech.
0733-9399,
125
(
3
), pp.
263
–
271
.
20.
Chorin
,
A. J.
, 1967, β€œ
A Numerical Method for Solving Incompressible Viscous Flow Problems
,”
J. Comput. Phys.
0021-9991,
2
, pp.
12
–
26
.
21.
Rogers
,
S. E.
, and
Kwak
,
D.
, 1990, β€œ
Upwind Differencing Scheme for the Time-Accurate Incompressible Navier-Stokes Equations
,”
AIAA J.
0001-1452,
28
(
2
), pp.
253
–
262
.
22.
Ahn
,
H. T.
, and
Kallinderis
,
Y.
, 2006, β€œ
Strongly Coupled Flow/Structure Interactions With a Geometrically Conservative ALE Scheme on General Hybrid Meshes
,”
J. Comput. Phys.
0021-9991,
219
, pp.
671
–
696
.
23.
Marzouk
,
O. A.
, and
Nayfeh
,
A. H.
, 2008, β€œ
Fluid Forces and Structure-Induced Damping of Obliquely-Oscillating Offshore Structures
,”
Proc. 18th Int. Offshore (Ocean) & Polar Eng. Conf. and Exhibition
, Vancouver, Canada,
3
, pp.
460
–
468
.
24.
Marzouk
,
O. A.
, 2008, β€œ
A Two-Step Computational Aeroacoustics Method Applied to High-Speed Flows
,”
Noise Control Eng. J.
0736-2501,
56
(
5
), pp.
396
–
410
.
25.
Fletcher
,
C. A. J.
, 1991,
Computational Techniques for Fluid Dynamics
, Vol.
II
, 2nd ed.,
Springer-Verlag
,
Germany
.
26.
Ravoux
,
J. F.
,
Nadim
,
A.
, and
Haj-Hariri
,
H.
, 2003, β€œ
An Embedding Method for Bluff Body Flows: Interactions of Two Side-by-Side Cylinder Wakes
,”
Theor. Comput. Fluid Dyn.
0935-4964,
16
, pp.
433
–
466
.
27.
Blackburn
,
H. M.
, and
Henderson
,
R. D.
, 1999, β€œ
A Study of Two-Dimensional Flow Past an Oscillating Cylinder
,”
J. Fluid Mech.
0022-1120,
385
, pp.
255
–
286
.
28.
Ericsson
,
L. E.
, 1980, β€œ
Karman Vortex Shedding and the Effect of Body Motion
,”
AIAA J.
0001-1452,
18
(
8
), pp.
935
–
944
.
You do not currently have access to this content.