Computational modeling of fluidized beds can be used to predict the operation of biomass gasifiers after extensive validation with experimental data. The present work focused on validating computational simulations of a fluidized bed using a multifluid Eulerian–Eulerian model to represent the gas and solid phases as interpenetrating continua. Simulations of a cold-flow glass bead fluidized bed, using two different drag models, were compared with experimental results for model validation. The validated numerical model was then used to complete a parametric study for the coefficient of restitution and particle sphericity, which are unknown properties of biomass. Biomass is not well characterized, and so this study attempts to demonstrate how particle properties affect the hydrodynamics of a fluidized bed. Hydrodynamic results from the simulations were compared with X-ray flow visualization computed tomography studies of a similar bed. It was found that the Gidaspow (blending) model can accurately predict the hydrodynamics of a biomass fluidized bed. The coefficient of restitution of biomass did not affect the hydrodynamics of the bed for the conditions of this study; however, the bed hydrodynamics were more sensitive to particle sphericity variation.

1.
Cui
,
H.
, and
Grace
,
J. R.
, 2007, “
Fluidization of Biomass Particles: A Review of Experimental Multiphase Flow Aspects
,”
Chem. Eng. Sci.
0009-2509,
62
(
1–2
), pp.
45
55
.
2.
Ohman
,
M.
,
Pommer
,
L.
, and
Nordin
,
A.
, 2005, “
Bed Agglomeration Characteristics and Mechanisms During Gasification and Combustion of Biomass Fuels
,”
Energy Fuels
0887-0624,
19
(
4
), pp.
1742
1748
.
3.
Scala
,
F.
,
Chirone
,
R.
, and
Salatino
,
P.
, 2006, “
Combustion and Attrition of Biomass Chars in a Fluidized Bed
,”
Energy Fuels
0887-0624,
20
(
1
), pp.
91
102
.
4.
Chirone
,
R.
,
Miccio
,
F.
, and
Scala
,
F.
, 2006, “
Mechanism and Prediction of Bed Agglomeration During Fluidized Bed Combustion of Biomass Fuel: Effect of the Reactor Scale
,”
Chem. Eng. J.
0300-9467,
123
(
3
), pp.
71
80
.
5.
Huilin
,
L.
,
Yunhua
,
Z.
,
Ding
,
J.
,
Gidaspow
,
D.
, and
Wei
,
L.
, 2007, “
Investigation of Mixing/Segregation of Mixture Particles in Gas-Solid Fluidized Beds
,”
Chem. Eng. Sci.
0009-2509,
62
(
1–2
), pp.
301
317
.
6.
Nijenhuis
,
J.
,
Korbee
,
R.
,
Lensselink
,
J.
,
Kiel
,
J. H. A.
, and
van Ommen
,
J. R.
, 2007, “
A Method for Agglomeration Detection and Control in Full-Scale Biomass Fired Fluidized Beds
,”
Chem. Eng. Sci.
0009-2509,
62
(
1–2
), pp.
644
654
.
7.
Bartels
,
M.
,
Lin
,
W.
,
Nijenhuis
,
J.
,
Kapteijn
,
F.
, and
van Ommen
,
J. R.
, 2008, “
Agglomeration in Fluidized Beds at High Temperatures: Mechanisms, Detection and Prevention
,”
Prog. Energy Combust. Sci.
0360-1285,
34
(
5
), pp.
633
666
.
8.
Heindel
,
T. J.
,
Hubers
,
J. L.
,
Jensen
,
T. C.
,
Gray
,
J. N.
, and
Striegel
,
A. C.
, 2005, “
Using X-rays for Multiphase Flow Visualization
,” ASME Paper No. FEDSM2005-77359.
9.
Heindel
,
T. J.
,
Gray
,
J. N.
, and
Jensen
,
T. C.
, 2008, “
An X-ray System for Visualizing Fluid Flows
,”
Flow Meas. Instrum.
0955-5986,
19
(
2
), pp.
67
78
.
10.
Franka
,
N. P.
,
Heindel
,
T. J.
, and
Battaglia
,
F.
, 2008, “
Visualizing Cold-Flow Fluidized Beds With X-rays
,” ASME Paper No. IMECE2007-43073.
11.
Zhang
,
K.
, and
Brandani
,
S.
, 2005, “
CFD Simulation in a Circulating Fluidized-Bed Biomass Gasifier—A Modified Particle Bed Model in Bubbling Fluidized Beds
,”
Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology
,
33
(
1
), pp.
1
5
.
12.
Taghipour
,
F.
,
Ellis
,
N.
, and
Wong
,
C.
, 2005, “
Experimental and Computational Study of Gas-Solid Fluidized Bed Hydrodynamics
,”
Chem. Eng. Sci.
0009-2509,
60
(
24
), pp.
6857
6867
.
13.
Du
,
W.
,
Bao
,
X.
,
Xu
,
J.
, and
Wei
,
W.
, 2006, “
Computational Fluid Dynamics (CFD) Modeling of Spouted Bed: Assessment of Drag Coefficient Correlations
,”
Chem. Eng. Sci.
0009-2509,
61
(
5
), pp.
1401
1420
.
14.
Mahinpey
,
N.
,
Vejahati
,
F.
, and
Ellis
,
N.
, 2007, “
CFD Simulation of Gas-Solid Bubbling Fluidized Bed: An Extensive Assessment of Drag Models
,”
4th International Conference on Computational and Experimental Methods in Multiphase and Complex Flow 2007
, Bologna, Italy, June 12–14, Vol.
56
, pp.
51
60
.
15.
Abdullah
,
M. Z.
,
Husain
,
Z.
, and
Yin Pong
,
S. L.
, 2003, “
Analysis of Cold Flow Fluidization Test Results for Various Biomass Fuels
,”
Biomass Bioenergy
0961-9534,
24
(
6
), pp.
487
494
.
16.
Richardson
,
J. F.
, 1971, “
Incipient Fluidization and Particulate Systems
,”
Fluidization
,
J.
Davidson
and
D.
Harrison
, eds.,
American Press
,
London
, pp.
27
29
.
17.
Syamlal
,
M.
,
Rogers
,
W.
, and
O’Brien
,
T.
, 1993, “
MFIX Documentation: Theory Guide
,” National Energy Technology Laboratory, Department of Energy, Technical Note DOE/METC-95/1013 and NTIS/DE95000031.
18.
Agrawal
,
K.
,
Loezos
,
P. N.
,
Syamlal
,
M.
, and
Sundaresan
,
S.
, 2001, “
The Role of Meso-Scale Structures in Rapid Gas-Solid Flows
,”
J. Fluid Mech.
0022-1120,
445
, pp.
151
185
.
19.
Lun
,
C. K.
,
Savage
,
S. B.
,
Jeffrey
,
D. J.
, and
Chepurniy
,
N.
, 1984, “
Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield
,”
J. Fluid Mech.
0022-1120,
140
, pp.
223
256
.
20.
Dalla Valle
,
J. M.
, 1948,
Micromeritics, The Technology of Fine Particles
,
Pitman
,
New York
.
21.
Syamlal
,
M.
, and
O’Brien
,
T.
, 2003, “
Fluid Dynamic Simulation of O3 Decomposition in a Bubbling Fluidized Bed
,”
AIChE J.
0001-1541,
49
(
11
), pp.
2793
2801
.
22.
Gidaspow
,
D.
, 1994,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academy
,
Boston, MA
.
23.
Huilin
,
L.
, and
Gidaspow
,
D.
, 2003, “
Hydrodynamics of Binary Fluidization in a Riser: CFD Simulation Using Two Granular Temperatures
,”
Chem. Eng. Sci.
0009-2509,
58
(
16
), pp.
3777
3792
.
24.
Lathouwers
,
D.
, and
Bellan
,
J.
, 2000, “
Modeling and Simulation of Bubbling Fluidized Beds Containing Particle Mixtures
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
2291
2304
.
25.
Syamlal
,
M.
, 1998, “
MFIX Documentation: Numerical Technique
,” National Energy Technology Laboratory, Department of Energy, Technical Note DOE/MC31346–5824 and NTIS/DE98002029.
26.
Syamlal
,
M.
, 1998, “
High Order Discretization Methods for the Numerical Simulation of Fluidized Beds
,” Department of Energy, Technical Note DOE/FETC/C-98/7305 and CONF-971113.
27.
Xie
,
N.
,
Battaglia
,
F.
, and
Pannala
,
S.
, 2008, “
Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part I, Hydrodynamics
,”
Powder Technol.
0032-5910,
182
(
1
), pp.
1
13
.
28.
Cao
,
J.
,
Cheng
,
Z.
,
Fang
,
Y.
,
Jing
,
H.
,
Huang
,
J.
, and
Wang
,
Y.
, 2008, “
Simulation and Experimental Studies on Fluidization Properties in a Pressurized Jetting Fluidized Bed
,”
Powder Technol.
0032-5910,
183
(
1
), pp.
127
132
.
29.
Ahuja
,
G. N.
, and
Patwardhan
,
A. W.
, 2008, “
CFD and Experimental Studies of Solids Hold-Up Distribution and Circulation Patterns in Gas-Solid Fluidized Beds
,”
Chem. Eng. J.
0300-9467,
143
(
1–3
), pp.
147
160
.
30.
Patel
,
A. K.
,
Waje
,
S. S.
,
Thorat
,
B. N.
, and
Mujumdar
,
A. S.
, 2008, “
Tomographic Diagnosis of Gas Maldistribution in Gas-Solid Fluidized Beds
,”
Powder Technol.
0032-5910,
185
(
3
), pp.
239
250
.
31.
Johnson
,
P. C.
, and
Jackson
,
R.
, 1987, “
Frictional-Collision Constitutive Relations for Granular Materials With Application to Plane Shearing
,”
J. Fluid Mech.
0022-1120,
176
, pp.
67
93
.
You do not currently have access to this content.