In order to investigate the erosion extent and mode of cavitation in different states by the commercial code FLUENT and evaluate the reliability of the software, the collapse processes of a vapor bubble, which was near or on the wall under the conditions in the stationary water or the high speed water, were simulated by the numerical calculation by using a 2D model. The results are in accordance with results presented by other researchers, so the simulation may testify to the validation of the code. We suppose that a bevel jet, which is generated contrary to the flow direction when the bubble collapses in high speed flow, may cause the ripple and fish-scale pit damage found on the transition parts of many hydraulic systems.

1.
Brennen
,
C. E.
, 1995,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
2.
Popinet
,
S.
, and
Zaleski
,
S.
, 2002, “
Bubble Collapse Near A Solid Boundary: A Numerical Study of the Influence of Viscosity
,”
J. Fluid Mech.
0022-1120,
464
, pp.
137
163
.
3.
Philipp
,
Lauterborn
, 1998, “
Cavitation Erosion by Single Laser-Produced Bubbles
,”
J. Fluid Mech.
0022-1120,
361
, pp.
75
116
.
4.
Hickling
,
R.
, and
Plesset
,
M. S.
, 1964, “
Collapse and Rebound of a Spherical Bubble in Water
,”
Phys. Fluids
0031-9171,
7
, pp.
7
14
.
5.
Plesset
,
M. S.
, and
Chapman
,
R. B.
, 1971, “
Collapse of an Initially Spherical Vapor Cavity in the Neighborhood of a Solid Boundary
,”
J. Fluid Mech.
0022-1120,
47
, pp.
283
290
.
6.
Lin
,
H.
,
Brian
,
D. S.
, and
Andrew
,
J. S.
, 2002, “
Rayleigh–Taylor Instability of Violently Collapsing Bubbles
,”
Phys. Fluids
1070-6631,
14
, pp.
2925
2928
.
7.
Tomita
,
Y.
, and
Shima
,
A.
, 1990, “
High-Speed Photographic Observations of Laser Induced Cavitation Bubbles in Water
,”
Acustica
0001-7884,
71
, pp.
161
171
.
8.
Lauterborn
,
W.
, 1997, “
Cavitation Bubble Dynamics
,”
Ultrason. Sonochem.
1350-4177,
4
, pp.
65
75
.
9.
Ohl
,
C. D.
,
Lindau
,
O.
, and
Lauterborn
,
W.
, 1998, “
Details of Asymmetric Bubble Collapse
,”
Third International Symposium on Cavitation
,
Grenoble, France
, Band 1, pp.
39
44
.
10.
Lu
,
F. K.
, and
Zhang
,
X.
, 1999, “
Visualization of a Confined Accelerated Bubble
,”
Shock Waves
0938-1287,
9
, pp.
333
339
.
11.
Shima
,
A.
, 1997, “
Studies on Bubble Dynamics
,”
Shock Waves
0938-1287,
7
, pp.
33
42
.
12.
Ishida
,
H.
,
Nuntadusit
,
C.
, and
Kimoto
,
H.
, 2001, “
Cavitation Bubble Behavior Near Solid Boundaries
,”
Fourth International Symposium on Cavitation
,
Pasadena, CA
.
13.
Sunitha
,
N.
,
Kenneth
,
J.
,
Lahey
,
R. T.
, Jr.
, and
Iskander
,
A.
, 2006, “
Hydrodynamic Simulation of Air Bubble Implosion Using a Level Set Approach
,”
J. Comput. Phys.
0021-9991,
215
, pp.
98
132
.
14.
Strauss
,
M.
,
Friedman
,
M.
,
Gurewitz
,
E.
,
Amendt
,
P.
,
London
,
R. A.
, and
Glinsky
,
M. E.
, 1999, “
Two Dimensional Rayleigh Model of Vapor Bubble Evolution
,”
Proc. SPIE
0277-786X,
3601
, pp.
212
224
.
15.
Pearson
,
A.
,
Blake
,
J. R.
, and
Otto
,
S. R.
, 2004, “
Jets in Bubbles
,”
J. Eng. Math.
0022-0833,
48
, pp.
391
412
.
16.
Parag
,
M. K.
,
Parag
,
R. G.
,
Aniruddha
,
B. P.
, and
Anne
,
M. W.
, 2003, “
Cavity Cluster Approach for Quantification of Cavitational Intensity in Sonochemical Reactors
,”
Ultrason. Sonochem.
1350-4177,
10
, pp.
181
189
.
17.
Parag
,
M. K.
,
Parag
,
R. G.
,
Aniruddha
,
B. P.
, and
Anne
,
M. W.
, 2005, “
Dynamics of Cavitational Bubbles and Design of a Hydrodynamic Cavitational Reactors: Cluster Approach
,”
Ultrason. Sonochem.
1350-4177,
12
, pp.
441
452
.
18.
Iga
,
Y.
,
Nonmi
,
N.
,
Goto
,
A.
,
Shin
,
B. R.
, and
Ikohagi
,
T.
, 2003, “
Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil
,”
J. Fluid Mech.
0022-1120,
125
, pp.
643
650
.
19.
Bourne
,
N. K.
, 2005, “
On Stress Wave Interactions in Liquid Impact
,”
Wear
0043-1648,
258
, pp.
588
595
.
20.
Chen
,
X.
,
Xu
,
R. Q.
,
Shen
,
Z. H.
,
Lu
,
J.
, and
Ni
,
X. W.
, 2004, “
Optical Investigation of Cavitation Erosion by Laser-Induced Bubble Collapse
,”
Opt. Laser Technol.
0030-3992,
36
, pp.
197
203
.
21.
Kyuichi
,
Y.
, 2002, “
Segregation of Vapor and Gas in a Sonoluminescing Bubble
,”
Ultrasonics
0041-624X,
40
, pp.
643
647
.
22.
Burdin
,
F.
,
Tsochatzidis
,
N. A.
,
Guiraud
,
P.
,
Wilhelm
,
A. M.
, and
Delmas
,
H.
, 1999, “
Characterization of the Acoustic Cavitation Cloud by Two Laser Techniques
,”
Ultrason. Sonochem.
1350-4177,
6
, pp.
43
51
.
23.
Anderson
,
J. D.
, Jr.
, 1995,
Computational Fluid Dynamics: The Basics With Applications
,
McGraw-Hill
,
New York
.
24.
Bowen
,
R. M.
, 1976,
Theory of Mixtures
,
Academic
,
New York
.
25.
Fluent Inc, 2005, FLUENT 6.2 User’s Guide.
26.
Prevenslik
,
T. V.
, 2003, “
The Cavitation Induced Becquerel Effect and the Hot Spot Theory of Sonoluminescence
,”
Ultrasonics
0041-624X,
41
, pp.
313
317
.
27.
Yasuhiro
,
S.
, and
Keiichi
,
S.
, 2003, “
Cavitation Bubble Collapse and Impact in the Wake of a Circular Cylinder
,”
Fifth International Symposium on Cavitation
,
Osaka, Japan
, Paper No. Cav03-GS-11-004.
28.
Wang
,
L. Y.
, 1998, “
Chat About Fish-Scale Pit
,”
China Proceedings Abrasion and Cavitation in Hydraulic Machinery
, pp.
106
119
, in Chinese.
29.
Yao
,
Q. P.
, 1999–2000, “
Some Pattern and Law of Hydraulic Turbine Abrasion and Cavitation Viewing From Boundary Layer Theory
,”
China Proceedings Abrasion and Cavitation in Hydraulic Machinery
, pp.
45
50
, in Chinese.
30.
Wu
,
P. H.
, 2002–2003, “
Probe Into the Nature and Cause of the Formation of Ripple and Fish-Scale Pit Damages
,”
China Proceedings Abrasion and Cavitation in Hydraulic Machinery
, pp.
51
58
, in Chinese.
You do not currently have access to this content.