The influence of inertia and boundary conditions on the steady state and stability of isothermal film casting of viscoelastic fluids is examined using a Phan-Thien–Tanner rheological model. The elongational flow between the die exit and the take-up point is investigated. In general, the steady-state film tends to contract for low-inertia flow; this contraction, however, is significantly diminished by inertia. The polymeric normal stresses and primary normal stress difference decrease in the most of the air gap as inertia increases. In contrast, the stress and stress difference increase considerably near the take-up point due to a dramatic increase in the elongation rate. The linear stability analysis for two-dimensional disturbances is carried out. For a polymer with no degradation, and in the absence of inertia (Re=0), the analysis predicts critical draw ratios that form an envelope to an unstable region. This region of unstable conditions reduces as inertia increases. Two branches of neutral stability curve are observed for higher-inertia flow as opposed to a single curve for Re=0. The unstable region expands as α increases, where α is a measure of polymer degradation. When α becomes sufficiently large, the elasticity tends to destabilize the flow. It is also found that boundary conditions have an important influence on the steady-state profiles and stability region, particularly for high-elasticity fluids.

1.
Lamberti
,
G.
,
Titomanlio
,
G.
, and
Brucato
,
V.
, 2001, “
Measurement and Modeling of the Film Casting Process 1. Width Distribution Along Draw Direction
,”
Chem. Eng. Sci.
0009-2509,
56
, p.
5749
.
2.
Acierno
,
D.
,
Di Maio
,
L.
, and
Ammirati
,
C. C.
, 2000, “
Film Casting of Polyethylene Terephthalate: Experiments and Model Comparisons
,”
Polym. Eng. Sci.
0032-3888,
40
, p.
101
.
3.
Seyfzadeh
,
B.
,
Harrison
,
G. M.
, and
Carlson
,
C. D.
, 2005, “
Experimental Studies on the Development of a Cast Film
,”
Polym. Eng. Sci.
0032-3888,
45
, p.
443
.
4.
Yeow
,
Y. L.
, 1974, “
On the Stability of Extending Films: A Model for the Film Casting Process
,”
J. Fluid Mech.
0022-1120,
66
, p.
613
.
5.
Pearson
,
J. R. A.
, and
Matovich
,
M. A.
, 1969, “
Spinning a Molten Thread Line: Stability
,”
Ind. Eng. Chem. Fundam.
0196-4313,
8
, p.
605
.
6.
Shah
,
Y. T.
, and
Pearson
,
J. R. A.
, 1972, “
On the Stability of Nonisothermal Fiber Spinning-General Case
,”
Ind. Eng. Chem. Fundam.
0196-4313,
11
, p.
150
.
7.
Aird
,
G. R.
, and
Yeow
,
Y. L.
, 1983, “
Stability of Film Casting of Power-Law Liquids
,”
Ind. Eng. Chem. Fundam.
0196-4313,
22
, p.
7
.
8.
Anturkar
,
N. R.
, and
Co
,
A.
, 1988, “
Draw Resonance in Film Casting of Viscoelastic Fluids: A Linear Stability Analysis
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
28
, p.
287
.
9.
Alaie
,
S. M.
, and
Papanastasiou
,
T. C.
, 1991, “
Film Casting of Viscoelastic Liquid
,”
Polym. Eng. Sci.
0032-3888,
31
, p.
67
.
10.
Iyengar
,
V. R.
, and
Co
,
A.
, 1993, “
Film Casting of a Modified Giesekus Fluid: A Steady-State Analysis
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
48
, p.
1
.
11.
Iyengar
,
V. R.
, and
Co
,
A.
, 1996, “
Film Casting of a Modified Giesekus Fluid: Stability Analysis
,”
Chem. Eng. Sci.
0009-2509,
51
, p.
1417
.
12.
Doufas
,
A. K.
, and
McHugh
,
A. J.
, 2001, “
Simulation of Melt Spinning Including Flow-Induced Crystallization. Part III. Quantitative Comparison With PET Spinline Data
.”
J. Rheol.
0148-6055,
45
, p.
403
.
13.
Kim
,
J. M.
,
Lee
,
J. S.
,
Shin
,
D. M.
,
Jung
,
H. W.
, and
Hyun
,
J. C.
, 2005, “
Transient Solutions of the Dynamics of Film Casting Process Using a 2-D Viscoelastic Model
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
132
, p.
53
.
14.
Denn
,
M. M.
,
Petrie
,
C. J. S.
, and
Avenas
,
P.
, 1975, “
Mechanics of Steady Spinning of a Viscoelastic Liquid
,”
AIChE J.
0001-1541,
21
, p.
791
.
15.
Silagy
,
D.
,
Demay
,
Y.
, and
Agassant
,
J. F.
, 1998, “
Stationary and Stability Analysis of the Film Casting Process
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
79
, p.
563
.
16.
Beris
,
A. N.
, and
Liu
,
B.
, 1988, “
Time-Dependent Fiber Spinning Equations. 1. Analysis of the Mathematical Behavior
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
26
, p.
341
.
17.
Chrisodoulou
,
K.
,
Hatzikiriakos
,
S. G.
, and
Vlassopoulos
,
D.
, 2000, “
Sability Analysis of Film Casting for PET Resin Using a Multimode Phan-Thien-Tanner Constitutive Equation
,”
J. Plast. Film Sheeting
8756-0879,
16
, p.
312
.
18.
Tsou
,
J. D.
, and
Bogue
,
D. C.
, 1985, “
The Effect of Die Flow on the Dynamics of Isothermal Melt Spinning
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
17
, p.
331
.
19.
Phan-Thien
,
N.
, and
Tanner
,
R. I.
, 1977, “
A New Constitutive Equation Derived From Network Theory
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
2
, p.
353
.
20.
Phan-Thien
,
N.
, 1978, “
A Nonlinear Network Viscoelastic Model
,”
J. Rheol.
0148-6055,
22
, p.
259
.
21.
Lee
,
J. S.
,
Jung
,
H. W.
, and
Hyun
,
J. C.
, 2000, “
Melt Spinning Dynamics of Phan-Thien–Tanner Fluids
,”
Korea-Aust. Rheol. J.
1226-119X,
12
, p.
119
.
22.
Keunings
,
R.
,
Crochet
,
M. J.
, and
Denn
,
M. M.
, 1983, “
Profile Development in Continuous Drawing of Viscoelastic Liquids
,”
Ind. Eng. Chem. Fundam.
0196-4313,
22
, p.
347
.
23.
Schultz
,
W. W.
, and
Davis
,
S. H.
, 1982, “
One-Dimensional Liquid Fibers
,”
J. Rheol.
0148-6055,
26
, p.
31
.
24.
Bechtel
,
S. E.
,
Cao
,
J. Z.
, and
Forest
,
M. G.
, 1992, “
Practical Application of a Higher OrderPerturbation Theory for Slender Viscoelastic Jets and Fibers
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
41
, p.
201
.
25.
Bechtel
,
S. E.
,
Forest
,
M. G.
, and
Lin
,
K. J.
, 1992, “Closure to All Orders in 1-D Models for Slender Viscoelastic Free Jets I. An Integrated Theory for Axisymmetric, Torsionless Flows, Stability and Applied Analysis of Continuous Media,” Journal of Stability and Applied Analysis of Continuous Media, 2, p. 59.
26.
Wang
,
Q.
,
Forest
,
M. G.
, and
Bechtel
,
S. E.
, 1995, “
Modeling and Computation of the Onset of Failure in Polymeric Liquid Filaments
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
58
, p.
97
.
27.
Fisher
,
R. J.
, and
Denn
,
M. M.
, 1976, “
A Theory of Isothermal Melt Spinning and Draw Resonance
,”
AIChE J.
0001-1541,
22
, p.
236
.
28.
Devereux
,
B. M.
, and
Denn
,
M. M.
, 1994, “
Frequency Response Analysis of Polymer Melt Spinning
,”
Ind. Eng. Chem. Res.
0888-5885,
33
, p.
2384
.
29.
Joo
,
Y. L.
,
Sun
,
J.
,
Smith
,
M. D.
,
Armstrong
,
R. C.
,
Brown
,
R. A.
, and
Ross
,
R. A.
, 2002, “
Two-Dimensional Numerical Analysis of Non-Isothermal Melt Spinning With and Without Phase Transition
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
102
, p.
37
.
30.
Olagunju
,
D. O.
, 1999, “
A 1-D Theory for Extensional Deformation of a Viscoelastic Filament Under Exponential Stretching
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
87
, p.
27
.
31.
Shimizu
,
J.
,
Okui
,
N.
,
Kaneko
,
A.
, and
Toriumi
,
K.
, 1978, “
High Speed Melt Spinning of Polyethylene Terephthalate (PET); Effects of Melt-Draw Ratio and Flow Rate
,”
Sen'i Gakkaishi
0037-9875,
34
, p.
T
-
64
.
32.
Chang
,
J. C.
, and
Denn
,
M. M.
, 1979, “
An Experimental Study of Isothermal Spinning of a Newtonian and a Viscoelastic Liquid
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
5
, p.
369
.
33.
Laun
,
H. M.
, and
Schuch
,
H.
, 1989, “
Transient Elongational Viscosities and Drawability of Polymer Melts
,”
J. Rheol.
0148-6055,
33
, p.
119
.
34.
Cao
,
F.
,
Khayat
,
R. E.
, and
Puskas
,
J. E.
, 2005, “
Effect of Inertia and Gravity on Draw Resonance in High-Speed Film Casting of Newtonian Fluids
,”
Int. J. Solids Struct.
0020-7683,
42
, p.
5734
.
You do not currently have access to this content.