The direct numerical simulation (DNS) method has been used to the study of the linear and shock wave propagation in bubbly fluids and the estimation of the efficiency of the cavitation mitigation in the container of the Spallation Neutron Source liquid mercury target. The DNS method for bubbly flows is based on the front tracking technique developed for free surface flows. Our front tracking hydrodynamic simulation code FronTier is capable of tracking and resolving topological changes of a large number of interfaces in two- and three-dimensional spaces. Both the bubbles and the fluid are compressible. In the application to the cavitation mitigation by bubble injection in the SNS, the collapse pressure of cavitation bubbles was calculated by solving the Keller equation with the liquid pressure obtained from the DNS of the bubbly flows. Simulations of the propagation of linear and shock waves in bubbly fluids have been performed, and a good agreement with theoretical predictions and experiments has been achieved. The validated DNS method for bubbly flows has been applied to the cavitation mitigation estimation in the SNS. The pressure wave propagation in the pure and the bubbly mercury has been simulated, and the collapse pressure of cavitation bubbles has been calculated. The efficiency of the cavitation mitigation by bubble injection has been estimated. The DNS method for bubbly flows has been validated through comparison of simulations with theory and experiments. The use of layers of nondissolvable gas bubbles as a pressure mitigation technique to reduce the cavitation erosion has been confirmed.

1.
Riemer
,
B.
, et al.
, 2002, “
Status Report on Mercury Target Related Issues
,” Technical Report No. SNS-101060100-TR0006-R00,
Oak Ridge National Laboratory
, TN.
2.
Beylich
,
A. E.
, and
Gülhan
,
A.
, 1990, “
On the Structure of Nonlinear Waves in Liquids With Gas Bubbles
,”
Phys. Fluids A
0899-8213,
2
(
8
), pp.
1412
1428
.
3.
Caflisch
,
R. E.
,
Miksis
,
M. J.
,
Papanicolaou
,
G. C.
, and
Ting
,
L.
, 1985, “
Effective Equations for Wave Propagation in Bubbly Liquids
,”
J. Fluid Mech.
0022-1120,
153
, pp.
259
273
.
4.
Watanabe
,
W.
, and
Prosperetti
,
A.
, 1994, “
Shock Waves in Dilute Bubbly Liquids
,”
J. Fluid Mech.
0022-1120,
274
, pp.
349
381
.
5.
van Wijngaarden
,
L.
, 1972, “
One-Dimensional Flow of Liquids Containing Small Gas Bubbles
,”
Annu. Rev. Fluid Mech.
0066-4189,
4
, pp.
369
396
.
6.
Finch
,
R. D.
, and
Neppiras
,
E. A.
, 1973, “
Vapor Bubble Dynamics
,”
J. Acoust. Soc. Am.
0001-4966,
53
, pp.
1402
1410
.
7.
Hao
,
Y.
, and
Prosperetti
,
A.
, 1999, “
The Dynamics of Vapor Bubbles in Acoustic Pressure Fields
,”
Phys. Fluids
1070-6631,
11
(
8
), pp.
2008
2019
.
8.
Ceccio
,
S. L.
, and
Brennen
,
C. E.
, 1991, “
Observations of the Dynamics and Acoustics of Traveling Bubble Cavitation
,”
J. Fluid Mech.
0022-1120,
233
, pp.
633
660
.
9.
Kuhn de Chizelle
,
Y.
,
Ceccio
,
S. L.
, and
Brennen
,
C. E.
, 1995, “
Observations and Scaling of Traveling Bubble Cavitation
,”
J. Fluid Mech.
0022-1120,
293
, pp.
99
126
.
10.
Welch
,
S. W.
, 1995, “
Local Simulation of Two-Phase Flows Including Interface Tracking With Mass Transfer
,”
J. Comput. Phys.
0021-9991,
121
, pp.
142
154
.
11.
Juric
,
D.
, and
Tryggvason
,
G.
, 1998, “
Computation of Boiling Flows
,”
Int. J. Multiphase Flow
0301-9322,
24
, pp.
387
410
.
12.
Delale
,
C. F.
,
Nas
,
S.
, and
Tryggvason
,
G.
, 2005, “
Direct Numerical Simulation of Shock Propagation in Bubbly Liquids
,”
Phys. Fluids
1070-6631,
17
, pp.
121705
121708
.
13.
Samulyak
,
R.
,
Lu
,
T.
, and
Prykarpatskyy
,
Y.
, 2004, “
Direct and Homogeneous Numerical Approaches to Multiphase Flows and Applications
,”
Lect. Notes Comput. Sci.
0302-9743,
3039
, pp.
653
660
.
14.
Samulyak
,
R.
,
Prykarpatskyy
,
Y.
,
Lu
,
T.
,
Glimm
,
J.
,
Xu
,
Z. L.
, and
Kim
,
M. N.
, 2006, “
Comparison of Heterogeneous and Homogenized Numerical Models of Cavitation
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
4
, pp.
377
390
.
15.
Keller
,
J. B.
, and
Kolodner
,
I. I.
, 1956, “
Damping of Underwater Explosion Bubble Oscillations
,”
J. Appl. Phys.
0021-8979,
27
, pp.
1152
1161
.
16.
Keller
,
J. B.
, and
Miksis
,
M. J.
, 1980, “
Bubble Oscillations of Large Amplitude
,”
J. Acoust. Soc. Am.
0001-4966,
68
, pp.
628
633
.
17.
Prosperetti
,
A.
, and
Lezzi
,
A. M.
, 1986, “
Bubble Dynamics in a Compressible Liquid. Part 1. First-Order Theory
,”
J. Fluid Mech.
0022-1120,
168
, pp.
457
478
.
18.
Commander
,
K. W.
, and
Prosperetti
,
A.
, 1989, “
Linear Pressure Waves in Bubbly Liquids: Comparison Between Theory and Experiments
,”
J. Acoust. Soc. Am.
0001-4966,
85
(
2
), pp.
732
746
.
19.
Chapman
,
R. B.
, and
Plesset
,
M. S.
, 1971, “
Thermal Effects in the Free Oscillation of Gas Bubbles
,”
ASME J. Basic Eng.
0021-9223,
93
, pp.
373
376
.
20.
Prosperetti
,
A.
,
Crum
,
L. A.
, and
Commander
,
K. W.
, 1988, “
Nonlinear Bubble Dynamics
,”
J. Acoust. Soc. Am.
0001-4966,
83
, pp.
502
514
.
21.
Fox
,
F. E.
,
Curley
,
S. R.
, and
Larson
,
G. S.
, 1955, “
Phase Velocity and Absorption Measurements in Water Containing Air Bubbles
,”
J. Acoust. Soc. Am.
0001-4966,
27
(
3
), pp.
534
539
.
22.
Macpherson
,
J. D.
, 1957, “
The Effects of Gas Bubbles on Sound Propagation in Water
,”
Proc. Phys. Soc. London, Sect. B
0370-1301,
70
, pp.
85
92
.
23.
Silberman
,
E.
, 1957, “
Sound Velocity and Attenuation in Bubbly Mixtures Measured in Standing Wave Tubes
,”
J. Acoust. Soc. Am.
0001-4966,
29
(
8
), pp.
925
933
.
24.
Glimm
,
J.
,
Grove
,
J.
, and
Zhang
,
Y.
, 2002, “
Interface Tracking for Axisymmetric Flows
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
24
(
1
), pp.
208
236
.
25.
Collela
,
P.
, and
Woodward
,
P.
, 1984, “
The Piecewise Parabolic Method (PPM) for Gas-Dynamics
,”
J. Comput. Phys.
0021-9991,
54
, pp.
174
201
.
26.
Collela
,
P.
, 1985, “
A Direct Eulerian MUSCL Scheme for Gas Dynamics
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
6
(
1
), pp.
104
117
.
27.
Glimm
,
J.
,
Grove
,
J.
,
Lindquist
,
B.
,
McBryan
,
O. A.
, and
Tryggvason
,
G.
, 1988, “
The Bifurcation of Tracked Scalar Waves
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
9
, pp.
61
79
.
28.
Glimm
,
J.
,
Grove
,
J.
,
Li
,
X. L.
, and
Tan
,
D. C.
, 2000, “
Robust Computational Algorithms for Dynamic Interface Tracking in Three Dimensions
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
21
, pp.
2240
2256
.
29.
Xu
,
Z. L.
,
Kim
,
M. N.
,
Lu
,
T.
,
Oh
,
W.
,
Glimm
,
J.
,
Samulyak
,
R.
,
Li
,
X. L.
, and
Tzanos
,
C.
, 2006, “
Discrete Bubble Modeling of Unsteady Cavitating Flow
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
4
, pp.
601
616
.
30.
Noordzij
,
L.
, and
van Wijngaarden
,
L.
, 1974, “
Relaxation Effects, Caused by Relative Motion, on Shock Waves in Gas-Bubble∕Liquid Mixture
,”
J. Fluid Mech.
0022-1120,
66
, pp.
115
143
.
31.
Lu
,
T.
, 2005, “
Direct Numerical Simulation of Bubbly Flows and Interfacial Dynamics of Phase Transitions
,” Ph.D. thesis, http://pubweb.bnl.gov/users/tlu/wwwhttp://pubweb.bnl.gov/users/tlu/www
32.
Brennen
,
C. E.
, 1995,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
Oxford
.
33.
Hickling
,
R.
, and
Plesset
,
M. S.
, 1964, “
Collapse and Rebound of a Spherical Bubble in Water
,”
Phys. Fluids
0031-9171,
7
(
1
), pp.
7
14
.
34.
Arndt
,
R. E. A.
, 1981, “
Cavitation in Fluid Machinery and Hydraulic Structures
,”
Annu. Rev. Fluid Mech.
0066-4189,
13
, pp.
273
328
.
35.
Glimm
,
J.
,
Grove
,
J.
,
Li
,
X. L.
,
Oh
,
W.
, and
Sharp
,
D. H.
, 2001, “
A Critical Analysis of Rayleigh-Taylor Growth Rates
,”
J. Comput. Phys.
0021-9991,
169
, pp.
652
677
.
36.
Jin
,
H.
,
Liu
,
X. F.
,
Lu
,
T.
,
Cheng
,
B.
,
Glimm
,
J.
, and
Sharp
,
D. H.
, 2005, “
Rayleigh-Taylor Mixing Rates for Compressible Flow
,”
Phys. Fluids
1070-6631,
17
, pp.
024104
024113
.
You do not currently have access to this content.