Experimental data are provided for physical understanding and computational fluid dynamics (CFD) validation for the surface combatant David–Taylor model basin Model 5415 bow and shoulder wave breaking. A photographic study was conducted using 5.72m replica and 3.05m geosim models of Model 5415 over a range of Froude numbers (Fr) to identify Fr and scale effects on wave breaking and choose the best Fr for the local flow measurements, which include near- and far-field means and rms wave elevation and mean velocity under the breaking waves. The larger model and Fr=0.35 were selected due to the large extents of quasisteady plunging bow and spilling shoulder wave breaking. A direct correlation is shown between regions of wave slope larger than 17deg and regions of large rms in wave height variation. Scars characterized by sudden changes in the mean wave height and vortices induced by wave breaking were identified. Complementary CFD solutions fill the gaps in the relatively sparse measurements enabling a more complete description of the bow and shoulder wave breaking and induced vortices and scars. The combined results have important implications regarding the modeling of the bubbly flow around surface ships, especially for bubble sources and entrainment.

1.
Baba
,
E.
, 1969, “
A New Component of Viscous Resistance of Ships
,”
J. Soc. Nav. Archit. Jpn.
0514-8499,
125
, pp.
9
34
.
2.
Miyata
,
H.
, and
Inui
,
T.
, 1984, “
Nonlinear Ship Waves
,”
Adv. Appl. Mech.
0065-2156,
24
, pp.
215
288
.
3.
Doi
,
Y.
,
Takeuchi
,
S.
,
Hong
,
S.
,
Kajatani
,
H.
, and
Miyata
,
H.
, 1982, “
Characteristics of Stern Waves Generated by Ships of Simple Hull Form (Second Report)
,”
J. Soc. Nav. Archit. Jpn.
0514-8499,
151
, pp.
9
34
.
4.
Dong
,
R. R.
,
Katz
,
J.
, and
Huang
,
T. T.
, 1997, “
On the Structure of Bow Waves on a Ship Model
,”
J. Fluid Mech.
0022-1120,
346
, pp.
77
115
.
5.
Roth
,
G. I.
,
Mascenik
,
D. T.
, and
Katz
,
J.
, 1999, “
Measurements of the Flow Structure and Turbulence Within a Ship Bow Wave
,”
Phys. Fluids
1070-6631,
11
(
11
), pp.
3512
3523
.
6.
Longo
,
J.
, and
Stern
,
F.
, 2002, “
Effects of Drift Angle on Model Ship Flow
,”
Exp. Fluids
0723-4864,
32
, pp.
558
569
.
7.
Tulin
,
M. P.
, and
Landrini
,
M.
, 2000, “
Breaking Waves in the Ocean and Around Ships
,”
Proceedings 23rd ONR Symposium on Naval Hydrodynamics
,
National Academic
,
Val de Reuil, France
.
8.
Di Mascio
,
A.
,
Muscari
,
R.
, and
Broglia
,
R.
, 2003, “
Computation of Free Surface Flows Around Ship Hulls by a Level Set Approach
,”
Proceedings of the Eighth International Conference on Numerical Ship Hydrodynamics, Busan, Korea
.
9.
Duncan
,
J. H.
, 2001, “
Spilling Breakers
,”
Annu. Rev. Fluid Mech.
0066-4189,
33
, pp.
519
547
.
10.
Rhee
,
S. H.
, and
Stern
,
F.
, 2002, “
RANS Modeling of Spilling Breaking Waves
,”
ASME J. Fluids Eng.
0098-2202,
124
(
2
), pp.
424
432
.
11.
Muscari
,
R.
, and
Di Mascio
,
A.
, 2003, “
A Model for the Simulation of Steady Spilling Breaking Waves
,”
J. Ship Res.
0022-4502,
47
(
1
), pp.
13
23
.
12.
Muscari
,
R.
, and
Di Mascio
,
A.
, 2004, “
Numerical Modeling of Breaking Waves Generated by a Ship’s Hull
,”
J. Mar. Sci. Technol.
0948-4280,
9
, pp.
158
170
.
13.
Hyman
,
M.
,
Moraga
,
F.
,
Drew
,
D.
, and
Lahey
,
R.
, 2006, “
Computation of the Unsteady Two-Phase Flow Around a Maneuvering Surface Ship
,”
26th ONR Symposium on Naval Hydrodynamics
,
National Academic
,
Rome, Italy
.
14.
Stern
,
F.
,
Longo
,
J.
,
Penna
,
R.
,
Olivieri
,
A.
,
Ratcliffe
,
T.
, and
Coleman
,
H.
, 2000, “
International Collaboration on Benchmark CFD Validation Data for Surface Combatant DTMB Model 5415
,”
23rd ONR Symposium on Naval Hydrodynamics
,
National Academic
,
Val de Reuil, France
.
15.
Wilson
,
R.
,
Carrica
,
P.
, and
Stern
,
F.
, “
Simulation of Ship Breaking Bow Waves and Induced Vortices and Scars
,”
Int. J. Numer. Methods Fluids
0271-2091,
54
(4),
419
451
(2007).
16.
Olivieri
,
A.
,
Pistani
,
F.
,
Avanzini
,
G.
,
Stern
,
F.
, and
Penna
,
R.
, 2001, “
Towing Tank Experiments of Resistance, Sinkage and Trim, Boundary Layer, Wake and Free Surface Flow Around a Naval Combatant INSEAN 2340 Model
,” IIHR Report No. 421.
17.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1995, “
Engineering Application of Experimental Uncertainty Analysis
,”
AIAA J.
0001-1452,
33
(
10
), pp.
1888
1895
.
18.
Olivieri
,
A.
,
Pistani
,
F.
,
Wilson
,
R.
,
Benedetti
,
L.
,
La Gala
,
F.
,
Campana
,
E. F.
, and
Stern
,
F.
, 2004, “
Froude Number and Scale Effects and Froude Number 0.35 Wave Elevations and Mean-Velocity Measurements for Bow and Shoulder Wave Breaking of Surface Combatant DTMB 5415
,” IIHR Report No 441.
19.
Longuet-Higgins
,
M. S.
, 1996, “
Progress Towards Understanding how Waves Break
,”
21st Symposium on Naval Hydrodynamics
,
National Academic
,
Trondheim, Norway
.
20.
Sarpkaya
,
T.
, and
Sutton
,
P. B. R.
, 1991, “
Interaction of a Vortex Couple With a Free Surface
,”
Exp. Fluids
0723-4864,
11
, pp.
205
217
.
21.
Tulin
,
M. P.
, 1996, “
Breaking of Ocean Waves and Downshifting
,”
Waves and Nonlinear Processes in Hydrodynamics
,
J.
Grue
,
B.
Gjevik
, and
J. E.
Weber
, eds.,
Kluwer Academic
,
Dordrecht
, pp.
177
190
.
22.
Duncan
,
J. H.
, 1983, “
The Breaking and Non-Breaking Wave Resistance of a Two-Dimensional Hydrofoil
,”
J. Fluid Mech.
0022-1120,
126
, pp.
507
520
.
23.
Fu
,
T. C.
,
Karion
,
A.
,
Rice
,
R. J.
, and
Walker
,
D. C.
, 2004, “
Experimental Study of the Bow Wave of the R/V Athena I
,”
25th ONR Symposium on Naval Hydrodynamics
,
National Academic
,
St. Johns, Canada
.
24.
Wilson
,
R.
,
Carrica
,
P.
, and
Stern
,
F.
, 2006, “
URANS Simulations for High-Speed Transom-Stern Ship With Breaking Waves
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
20
(
2
), pp.
105
125
.
You do not currently have access to this content.