High-fidelity Reynolds-averaged Navier Stokes (RANS) simulations are presented for the ducted marine propulsor P5206, including verification and validation (V&V) using available experimental fluid dynamics data, and subvisual cavitation, and acoustics analysis using the modified Rayleigh-Plesset equation along the bubble trajectories with a far-field form of the acoustic pressure for a collapsing spherical bubble. CFDSHIP-IOWA is used with the blended kωkε turbulence model and extensions for a relative rotating coordinate system and overset grids. The intervals of V&V analysis for thrust, torque, and profile averaged radial velocity just downstream of rotor tip are reasonable in comparison with previous results. The flow pattern displays the interaction and merging of the tip-leakage and trailing edge vortices. In the interaction region, multiple peaks and vorticity are smaller, whereas in the merging region, there is better agreement with the experiment. The tip-leakage vortex core position, size, circulation, and cavitation patterns for σi=5 also show good agreement with the experiment, although the vortex core size is larger and the circulation in the interaction region is smaller. The simulations indicate globally minimum Cp=σi=8.8 on the suction side of the rotor tip at 84% chord from the leading edge and locally minimum Cp=6.4 in the tip-leakage vortex at 8% chord downstream of the trailing edge, whereas EFD indicates σi=11 and the location in the tip-leakage vortex core 50% chord downstream of the trailing edge. Subvisual cavitation and acoustics analysis show that bubble dynamics may partly explain these discrepancies.

1.
Judge
,
C. Q.
,
Oweis
,
G. F.
,
Ceccio
,
S. L.
,
Jessup
,
S. D.
,
Chesnakas
,
C.
J.
, and
Fry
,
D. J.
, 2001, “
Tip-Leakage Vortex Interaction on a Ducted Rotor
,”
CAV 2001: The 4th International Symposium on Cavitation
, Pasadena, CA.
2.
Sanchez-Caja
,
A.
, 1996, “
Numerical Calculation of Viscous Flow Around DTRC Propeller 4119 for Advance Number Range 0.3–1.1 Using the FINFLO Navier-Stokes Solver
,” Technical Report VALB141A, VTT Manufacturing Technology, Tekniihantie 12, Espoo, Finland.
3.
Abdel-Maksoud
,
M.
,
Menter
,
F.
, and
Wuttke
,
H.
, 1998, “
Viscous Flow Simulations for Conventional and High-Skew Marine Propellers
,”
Ship Technology Research
,
45
, pp.
64
71
.
4.
Hsiao
,
C.-T.
, and
Pauley
,
L. L.
, 1998, “
Numerical Computation of Tip Vortex Flow Generated by Marine Propeller
,”
ASME FED Summer Meeting
, Washington, DC.
5.
Feng
,
J.
,
Wang
,
V. A.
,
Lee
,
Y.-T.
, and
Merkle
,
C. L.
, 1998, “
CFD Modeling of Tip Vortex for Open Marine Propeller
,”
ASME FED Summer Meeting
, Washington, DC.
6.
Chen
,
B.
, 2000, “
RANS Simulation of Tip Vortex Flow for a Finite-Span Hydrofoil and a Marine Propulsor
,” Ph.D. thesis, The University of Iowa, Iowa City, IA.
7.
Chen
,
B.
, and
Stern
,
F.
, 1999, “
Computational Fluid Dynamics of Four-Quadrant Marine-Propulsor Flow
,”
J. Ship Res.
0022-4502,
43
(
4
), pp.
218
228
.
8.
Brewer
,
W. H.
, 2002, “
On Simulating Tip-Leakage Vortex Flow to Study the Nature of Cavitation Inception
,” Ph.D. thesis, Mississippi State University, MS.
9.
Meyer
,
R. S.
,
Billet
,
M. L.
, and
Holl
,
J. W.
, 1992, “
Freestream Nuclei and Traveling Bubble Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
114
, pp.
672
679
.
10.
Chizelle
,
Y. K.
,
Ceccio
,
S. L.
, and
Brennen
,
C. E.
, 1995, “
Observations and Scaling of Traveling Bubble Cavitation
,”
J. Fluid Mech.
0022-1120,
293
, pp.
99
126
.
11.
Hsiao
,
C.-T.
, and
Pauley
,
L. L.
, 1997, “
Numerical Study of Tip Vortex Cavitation Inception Using a Bubble Dynamics Model
,”
ASME FED Summer Meeting (FEDSM 97-325)
, Vancouver, BC, Canada.
12.
Farrell
,
K. J.
, 2001, “
Eulerian/Lagrangian Analysis for the Prediction of Cavitation Inception
,”
CAV2001: The 4th International Symposium on Cavitation
, Pasadena, CA.
13.
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
, 2001, “
Numerical Simulation of Bubble Dynamics in a Vortex Flow Using Navier-Stokes Computations and Moving Chimera Grid Scheme
,”
CAV2001: The 4th International Symposium on Cavitation
, Pasadena, CA.
14.
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
, 2002, “
Prediction of Vortex Cavitation Inception Using Coupled Spherical and Non-Spherical Models and UnRANS Computations
,”
Proceedings of the 24th Symposium on Naval Hydrodynamics
, Fukuoka, Japan, 2002.
15.
Paterson
,
E. G.
,
Wilson
,
R. V.
, and
Stern
,
F.
, 2003, “
General Purpose Parallel Unsteady RANS Ship Hydrodynamics Code: CFDSHIP-IOWA
,” IIHR Report No. 432,
The University of Iowa
, Iowa City, IA.
16.
Wilson
,
R. V.
,
Paterson
,
E. G.
, and
Stern
,
F.
, 2000, “
Verification and Validation for RANS Simulation of a Naval Combatant
,”
Gothenburg 2000: A Workshop on Numerical Ship Hydrodynamics
, Gothenburg, Sweden.
17.
Wilson
,
R. V.
,
Stern
,
F.
,
Coleman
,
H.
, and
Paterson
,
E. G.
, 2001, “
Comprehensive Approach to Verification and Validation of CFD Simulations—Part 2: Application for RANS Simulation of Cargo/Container Ship
,”
ASME J. Fluids Eng.
0098-2202,
123
(
4
), pp.
803
810
.
18.
Menter
,
F.
, 1993, “
Zonal Two-Equation k−ω Turbulence Models for Aerodynamic Flows
,” AIAA Paper No. 93-2906.
19.
Wilcox
,
D. C.
, 1988, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
0001-1452,
26
, pp.
1299
1310
.
20.
Jones
,
W. P.
, and
Launder
,
B. E.
, 1973, “
The Calculation of Low-Reynolds-Number Phenomena with a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
0017-9310,
16
, pp.
1119
1130
.
21.
Suhs
,
N. E.
,
Rogers
,
S. E.
, and
Dietz
,
W. E.
, 2002, “
PEGASUS 5: An Automated Preprocessors for Overset-Grid CFD
,” AIAA Paper No. 2002-3186.
22.
Issa
,
R. I.
, 1986, “
Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
0021-9991,
62
, pp.
40
65
.
23.
Plesset
,
M. S.
, 1949, “
The Dynamics of Cavitation Bubbles
,”
ASME J. Appl. Mech.
0021-8936,
16
, pp.
228
231
.
24.
Johnson
,
V. E.
, and
Hsieh
,
T.
, 1966, “
The Influence of the Trajectories of Gas Nuclei on Cavitation Inception
,”
Proceedings of the 6th Symposium on Naval Hydrodynamics
.
25.
Haberman
,
W. L.
, and
Morton
,
R. K.
, 1953, “
An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids
,” DTMB Report No. 802.
26.
Maxey
,
B. H.
, and
Riley
,
J. J.
, 1983, “
Equation of Motion for a Small Rigid Sphere in a Uonuniform Flow
,”
Phys. Fluids
0031-9171,
26
(
4
), pp.
883
889
.
27.
Blake
,
W. K.
, 1986,
Mechanics of Flow-Induced Sound and Vibration
,
Academic Press
,
New York
.
28.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H.
, and
Paterson
,
E. G.
, 2001, “
Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedure
,”
ASME J. Fluids Eng.
0098-2202,
123
(
4
), pp.
793
802
.
29.
Longo
,
J.
, 2002, personal communication.
30.
Kim
,
J.
, 2002, “
Sub-Visual Cavitation and Acoustic Modeling for Ducted Marine Propulsor
,” Ph.D. thesis, The University of Iowa, IA.
31.
Friesch
,
J.
, 2000, “
Ten Years of Research in Hydrodynamics and Cavitation Tunnel—HYKAT of HSVA
,”
NCT ’50 International Conference of Propeller Cavitation
, New Castle, UK.
32.
Neppiras
,
E. A.
, 1980, “
Acoustic Cavitation
,”
Phys. Rep.
0370-1573,
61
(
3
), pp.
159
251
.
33.
Young
,
F. R.
, 1989,
Cavitation
,
McGraw-Hill
,
New York
.
34.
Hinze
,
J. O.
, 1975,
Turbulence
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.