The spatial stability of a natural convection flow on upward-facing, heated, inclined plates is revisited. The eigenvalue problem is solved numerically employing two methods: the collocation method with Chebyshev polynomials and the fourth-order Runge-Kutta method. Two modes, traveling waves and stationary longitudinal vortices, are considered. Previous theoretical models indicated that nonparallel effects of the mean flow are significant for the vortex instability mode, but most of them ignored the fact that the eigenfunctions are dependent on the streamwise coordinate as well. In the present work, the method of multiple scales is applied to take the nonparallel flow effects into consideration. The results demonstrate the stabilizing character of the nonparallel flow effects. The vortex instability mode is also considered within the scope of partial differential equations. The results demonstrate dependence of the neutral point on the initial conditions but, farther downstream, the results collapse onto one curve. The marching method is compared with the quasi-parallel normal mode analysis and with theoretical results including correction to nonparallel flow effects. The marching method provides better agreement of theoretical and experimental growth rates.

1.
Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B., 1988, Buoyancy-Induced Flows and Transport, Hemisphere, Washington, DC.
2.
Sparrow
,
E. M.
, and
Husar
,
R. B.
,
1969
, “
Longitudinal Vortices in Natural Convection Flow on Inclined Plates
,”
J. Fluid Mech.
,
37
, pp.
251
255
.
3.
Lloyd
,
J. R.
, and
Sparrow
,
E. M.
,
1970
, “
On the Instability of Natural Convection Flow on Inclined Plates
,”
J. Fluid Mech.
,
42
, pp.
465
470
.
4.
Shaukatullah
,
H.
, and
Gebhart
,
B.
,
1978
, “
An Experimental Investigation of Natural Convection Flow on an Inclined Surface
,”
Int. J. Heat Mass Transf.
,
21
, pp.
1481
1490
.
5.
Zuercher
,
E. J.
,
Jacobs
,
J. W.
, and
Chen
,
C. F.
,
1998
, “
Experimental Study of the Stability of Boundary-Layer Flow Along a Heated, Inclined Plate
,”
J. Fluid Mech.
,
367
, pp.
1
25
.
6.
Trautman, M. A., 1999, “The Manipulation of Instability in a Natural Convection Boundary Layer Along a Heated, Inclined Plate,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
7.
Haaland
,
S. E.
, and
Sparrow
,
E. M.
,
1973
, “
Vortex Instability of Natural Convection Flow on Inclined Surfaces
,”
Int. J. Heat Mass Transf.
,
16
, pp.
2355
2367
.
8.
Iyer
,
P. A.
, and
Kelly
,
R. E.
,
1974
, “
The Stability of the Laminar Free Convection Flow Induced by a Heated, Inclined Plate
,”
Int. J. Heat Mass Transf.
,
17
, pp.
517
525
.
9.
Chen
,
C. C.
,
Labhabi
,
A.
,
Chang
,
H.-C
, and
Kelly
,
R. E.
,
1991
, “
Spanwise Pairing of Finite-Amplitude Longitudinal Vortex Rolls in Inclined Free-Convection Boundary Layers
,”
J. Fluid Mech.
,
231
, pp.
73
111
.
10.
Lee
,
H. R.
,
Chen
,
T. S.
, and
Armaly
,
B. F.
,
1992
, “
Non-Parallel Thermal Instability of Natural Convection Flow on Non-Isothermal Inclined Flat Plates
,”
Int. J. Heat Mass Transf.
,
35
, pp.
207
220
.
11.
Wakitani
,
S.
,
1985
, “
Non-Parallel-Flow Stability of a Two-Dimensional Buoyant Plume
,”
J. Fluid Mech.
,
159
, pp.
241
258
.
12.
Bouthier
,
M.
,
1971
, “
Stabilite´ Line´aire des E´coulements Presque Paralle´les par la Method des E´chelles Multiples
,”
C. R. Acad. Sci., Ser., A
,
273
, pp.
1101
1104
.
13.
Bouthier
,
M.
,
1973
, “
Stabilite´ Line´aire des E´coulements Presque Paralle´les. Part 1
,”
J. Mec.
,
12
, pp.
75
95
.
14.
Gaster
,
M.
,
1974
, “
On the Effects of Boundary Layer Growth on Flow Stability
,”
J. Fluid Mech.
,
66
, pp.
465
480
.
15.
Saric
,
W. S.
, and
Nayfeh
,
A. H.
,
1975
, “
Non-Parallel Stability of Boundary-Layer Flows
,”
Phys. Fluids
,
18
, pp.
945
950
.
16.
Saric
,
W. S.
,
1994
, “
Go¨rtler Vortices
,”
Annu. Rev. Fluid Mech.
,
26
, pp.
379
409
.
17.
Hall
,
P.
,
1983
, “
The Linear Development of Go¨rtler Vortices in Growing Boundary Layers
,”
J. Fluid Mech.
,
130
, pp.
41
58
.
18.
Day
,
H. P.
,
Herbert
,
T.
, and
Saric
,
W. S.
,
1990
, “
Comparing Local and Marching Analyses of Go¨rtler Instability
,”
AIAA J.
,
28
, pp.
1010
1015
.
19.
Luchini
,
P.
, and
Bottaro
,
A.
,
1998
, “
Go¨rtler Vortices: A Backward-in-Time Approach to the Receptivity Problem
,”
J. Fluid Mech.
,
363
, pp.
1
23
.
20.
Hall
,
P.
, and
Morris
,
H.
,
1992
, “
On the Instability of Boundary Layers on Heated Plates
,”
J. Fluid Mech.
,
245
, pp.
367
400
.
21.
Jeschke
,
P.
, and
Beer
,
H.
,
2001
, “
Longitudinal Vortices in a Laminar Natural Convection Boundary Layer Flow on an Inclined Flat Plate and Their Influence on Heat Transfer
,”
J. Fluid Mech.
,
432
, pp.
313
339
.
22.
Malik
,
M. R.
,
1990
, “
Numerical Methods for Hypersonic Boundary Layer Stability
,”
J. Comput. Phys.
,
86
, pp.
376
413
.
23.
Andersson
,
P.
,
Berggren
,
M.
, and
Henningson
,
D. S.
,
1999
, “
Optimal Disturbances and Bypass Transition in Boundary Layers
,”
Phys. Fluids
,
11
, pp.
134
147
.
24.
Ashpis
,
D.
, and
Reshotko
,
E.
,
1990
, “
The Vibrating Ribbon Problem Revisited
,”
J. Fluid Mech.
,
213
, pp.
513
547
.
25.
Tumin
,
A.
, and
Reshotko
,
E.
,
2001
, “
Spatial Theory of Optimal Disturbances in Boundary Layers
,”
Phys. Fluids
,
13
, pp.
2097
2104
.
26.
Hall
,
P.
,
1982
, “
Taylor-Go¨rtler Vortices in Fully Developed or Boundary Layer Flows—Linear Theory
,”
J. Fluid Mech.
,
124
, pp.
475
494
.
27.
Reshotko
,
E.
,
2001
, “
Transient Growth: A Factor in Bypass Transition
,”
Phys. Fluids
,
13
, pp.
1067
1075
.
28.
Schmid, P. J., and Henningson, D. S., 2001, Stability and Transition in Shear Flows (Applied Mathematical Sciences, 142), Springer-Verlag, New York.
29.
Cossu, C., Chomaz, J.-M., and Costa, M., 2000, “Maximum Growth of Go¨rtler Vortices,” Laminar-Turbulent Transition, H. Fasal and W. S. Saric, eds., IUTAM Symposium, Sedona, AZ, Springer-Verlag, New York, pp. 511–516.
30.
Ardonceau, P., and Chevalerie, D. A., 2000, “Non Normality of the Go¨rtler Operator and Spatial Amplification,” Laminar-Turbulent Transition, H. Fasel and W. S. Saric, eds., IUTAM Symposium, Sedona, AZ, Springer-Verlag, New York, pp. 517–522.
31.
Tumin
,
A. M.
, and
Fedorov
,
A. V.
,
1983
, “
Excitation of Instability Waves in a Boundary Layer on a Vibrating Surface
,”
J. Appl. Mech. Tech. Phys.
,
24
, pp.
348
354
(translated from Russian).
32.
Tumin
,
A.
,
1996
, “
Receptivity of Pipe Poiseuille Flow
,”
J. Fluid Mech.
,
315
, pp.
119
137
.
You do not currently have access to this content.