Recent investigations of bubbly cavitating nozzle flows using the polytropic law for the partial gas pressure have shown flow instabilities that lead to flashing flow solutions. Here, we investigate the stabilizing effect of thermal damping on these instabilities. For this reason we consider the energy equation within the bubble, assumed to be composed of vapor and gas, in the uniform pressure approximation with low vapor concentration. The partial vapor pressure is fixed by the vapor saturation pressure corresponding to the interface temperature, which is evaluated by assuming the thin boundary layer approximation within the liquid. Consequently, the partial gas pressure is evaluated by its relation to the heat flux through the interface in the uniform pressure approximation. The model is then coupled to the steady-state cavitating nozzle flow equations replacing the polytropic law for the partial gas pressure. The instabilities found in steady cavitating nozzle flows are seen to be stabilized by thermal damping with or without the occurrence of bubbly shock waves.

1.
Chapman
,
R. P.
, and
Plesset
,
M. S.
,
1971
, “
Thermal Effects in the Free Oscillation of Gas Bubbles
,”
ASME J. Basic Eng.
,
93
, pp.
373
376
.
2.
Nigmatulin
,
R. I.
,
Khabeev
,
N. S.
, and
Nagiev
,
F. B.
,
1981
, “
Dynamics, Heat and Mass Transfer of Vapor-Gas Bubbles in a Liquid
,”
Int. J. Heat Mass Transf.
,
24
, pp.
1033
1044
.
3.
Miksis
,
M. J.
, and
Ting
,
L.
,
1984
, “
Nonlinear Radial Oscillations of a Gas Bubble Including Thermal Effects
,”
J. Acoust. Soc. Am.
,
76
, pp.
897
905
.
4.
Prosperetti
,
A.
,
Crum
,
L. A.
, and
Commander
,
K. W.
,
1988
, “
Nonlinear bubble dynamics
,”
J. Acoust. Soc. Am.
,
83
, pp.
502
514
.
5.
Prosperetti
,
A.
,
1991
, “
The Thermal Behavior of Oscillating Gas Bubbles
,”
J. Fluid Mech.
,
222
, pp.
587
616
.
6.
Brennen, C. E., 1995, Cavitation and Bubble Dynamics, Oxford University Press, Oxford, UK.
7.
Hao
,
Y.
, and
Prosperetti
,
A.
,
1999
, “
The Dynamics of Vapor Bubbles in Acoustic Pressure Fields
,”
Phys. Fluids
,
11
, pp.
2008
2019
.
8.
Matsumoto
,
Y.
, and
Takemura
,
F.
,
1994
, “
Influence of Internal Phenomena on Gas Bubble Motion (Effects of Thermal Diffusion, Phase Change on the Gas-Liquid Interface and Mass Diffusion Between Vapor and Non-condensable Gas in the Collapsing Phase)
,”
JSME Int. J. B
,
37
(
2
), pp.
288
296
.
9.
Takemura
,
F.
, and
Matsumoto
,
Y.
,
1994
, “
Influence of Internal Phenomena on Gas Bubble Motion (Effects of Transport Phenomena and Mist Formation Inside the Bubble in the Expanding Phase)
,”
JSME Int. J. B
,
37
(
4
), pp.
736
745
.
10.
Wang
,
Y. C.
, and
Brennen
,
C. E.
,
1998
, “
One-Dimensional Bubbly Cavitating Flows Through a Converging-Diverging Nozzle
,”
ASME J. Fluids Eng.
,
120
, pp.
166
170
.
11.
Delale
,
C. F.
,
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Quasi-One-Dimensional Steady-State Cavitating Nozzle Flows
,”
J. Fluid Mech.
,
427
, pp.
167
204
.
12.
Plesset
,
M. S.
, and
Zwick
,
S. A.
,
1952
, “
A Nonsteady Heat Diffusion Problem With Spherical Symmetry
,”
J. Appl. Phys.
,
23
, pp.
95
98
.
13.
Leighton, T. G., 1994, The Acoustic Bubble, Academic Press, San Diego, CA.
14.
Watanabe
,
M.
, and
Prosperetti
,
A.
,
1994
, “
Shock Waves in Dilute Bubbly Liquids
,”
J. Fluid Mech.
,
274
, pp.
349
381
.
15.
Kamath
,
V.
,
Prosperetti
,
A.
, and
Egolfopoulos
,
F. N.
,
1993
, “
A Theoretical Study of Sonoluminescence
,”
J. Acoust. Soc. Am.
,
94
, pp.
248
260
.
16.
Preston
,
A. T.
,
Colonius
,
T.
, and
Brennen
,
C. E.
,
2002
, “
A Numerical Investigation of Unsteady Bubbly Cavitating Nozzle Flows
,”
Phys. Fluids
,
14
, pp.
300
311
.
You do not currently have access to this content.