An understanding of vortical structures and vortex breakdown is essential for the development of highly maneuverable vehicles and high angle of attack flight. This is primarily due to the physical limits these phenomena impose on aircraft and missiles at extreme flight conditions. Demands for more maneuverable air vehicles have pushed the limits of current CFD methods in the high Reynolds number regime. Simulation methods must be able to accurately describe the unsteady, vortical flowfields associated with fighter aircraft at Reynolds numbers more representative of full-scale vehicles. It is the goal of this paper to demonstrate the ability of detached-eddy Simulation (DES), a hybrid Reynolds-averaged Navier-Stokes (RANS)/large-eddy Simulation (LES) method, to accurately predict vortex breakdown at Reynolds numbers above 1×106. Detailed experiments performed at Onera are used to compare simulations utilizing both RANS and DES turbulence models.

1.
Werle´, H., 1954, “Quelques re´sultats expe´rimentaux sur les ailes en fle`che, aux faibles vitesses, obtenus en tunnel hydrodynamique” La Rech. Ae´ronaut., No. 41, Sep.-Oct. pp. 15–21.
2.
Peckham, D. H., and Atkinson, S. A., 1957, “Preliminary Results of Low Speed Wind Tunnel Tests on a Gothic Wing of Aspect Ration 1.0,” Aeronautical Research Council Technical Report, C.P. No 508, T. N. Aero 2504, Apr.
3.
Elle, B. J., 1961, “An Investigation at Low Speed of the Flow near the Apex of Thin Delta Wings With Sharp Leading Edges,” Aeronautical Research Council R&M, No. 3176.
4.
Lambourne, N. C., and Bryer, D. W., 1962, “The Bursting of Leading-Edge Vortices-Some Observations and Discussion of the Phenomenon,” Aeronautical Research Council R&M No. 3282.
5.
Hall
,
M. G.
,
1972
, “
Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
4
, pp.
195
218
.
6.
Leibovich
,
S.
,
1978
, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
10
, pp.
221
246
.
7.
Sarpkaya
,
T.
,
1971
, “
On Stationary and Traveling Vortex Breakdowns
,”
J. Fluid Mech.
,
45, Part 3
, pp.
545
559
.
8.
Nelson, R. C., “Unsteady Aerodynamics of Slender Wings,” Aircraft Dynamics at High Angles of Attack: Experiments and Modeling, AGARD-R-776, pp. 1-1–1-26.
9.
De´lery
,
J.
,
1994
, “
Aspects of Vortex Breakdown
,”
Prog. Aerosp. Sci.
,
30
, pp.
1
59
.
10.
Faller
,
J. H.
, and
Leibovich
,
S.
,
1977
, “
Disrupted States of Vortex Flow and Vortex Breakdown
,”
Phys. Fluids
,
20
(
9
), pp.
1385
1400
.
11.
Menke, M., Yang, H., and Gursul, I., 1996, “Further Experiments on Fluctuations of Vortex Breakdown Location,” Paper No. AIAA-96-0205, 34th AIAA Aerospace Sciences Meeting and Exhibit, Jan. 1996, Reno, NV.
12.
Mitchell
,
A. M.
,
Molton
,
P.
,
Barberis
,
D.
, and
De´lery
,
J.
,
2000
, “
Oscillation of Vortex Breakdown Location and Control of the Time-Averaged Location by Blowing
,”
AIAA J.
,
38
(
5
), pp.
793
803
.
13.
Gordnier, R. E., 1996, “Computational Study of a Turbulent Delta-Wing Flowfield Using Two-Equation Turbulence Models,” Paper No. AIAA-96-2076, 27th AIAA Fluid Dynamics Conference, June, New Orleans, LA.
14.
Murman, S. M., and Chaderjian, N. M., 1998, “Application of Turbulence Models to Separated High-Angle-of-Attack Flows,” Paper No. AIAA-98-4519.
15.
Murman, S. M., 2001, “Vortex Filtering for Turbulence Models Applied to Crossflow Separation,” Paper No. AIAA-2001-0114, 39th Aerospace Sciences Meeting & Exhibit, Jan. Reno, NV.
16.
Menter, F. R., 1993, “Zonal Two Equation k−ω Turbulence Models for Aerodynamic Flows,” Paper No. AIAA-93-2906.
17.
Dacles-Mariani
,
J.
,
Zilliac
,
G. G.
,
Chow
,
J. S.
, and
Bradshaw
,
P.
,
1995
, “
Numerical/Experimental Study of a Wingtip Vortex in the Near Field
,”
AIAA J.
,
33
(
9
), pp.
1561
1568
.
18.
Spalart
,
P. R.
, and
Shur
,
M. L.
,
1997
, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
J. Fluid Mech.
,
358
, pp.
223
223
.
19.
Spalart, P. R., Jou W-H., Strelets M., and Allmaras, S. R., 1997, “Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach,” Advances in DNS/LES, 1st AFOSR Int. Conf. on DNS/LES, Aug. 4–8, Greyden Press, Columbus OH.
20.
Strelets, M., 2001, “Detached Eddy Simulation of Massively Separated Flows,” Paper No. AIAA 01-0879.
21.
Forsythe, J. R., Hoffmann, K. A., Dieteker, F. F., 2000, “Detached-Eddy Simulation of a Supersonic Axisymmetric Base Flow with an Unstructured Flow Solver,” Paper No. AIAA 00-2410.
22.
Squires, K. D., Forsythe, J. R., Morton, S. A., Strang, W. Z., Wurtzler, K. E., Tomaro, R. F., Grismer, M. J., and Spalart, P. R., “Progress on Detached-Eddy Simulation of Massively Separated Flows,” Paper No. AIAA 2002-1021.
23.
Strang, W. Z., Tomaro, R. F., Grismer, M. J., 1999, “The Defining Methods of Cobalt: A Parallel, Implicit, Unstructured Euler/Navier-Stokes Flow Solver,” Paper No. AIAA 99-0786.
24.
Mitchell, A., Molton, P., Barberis, D., and Delery, J., 2000, “Characterization of Vortex Breakdown by Flow Field and Surface Measurements,” Paper No. AIAA 2000-0788.
25.
Samareh, J., 1995, “Gridtool: A Surface Modeling and Grid Generation Tool,” Proceedings of the Workshop on Surface Modeling, Grid Generation, and Related Issues in CFD Solution, NASA CP-3291, May 9–11.
26.
Pirzadeh, S., 1996, “Progress Toward A User-Oriented Unstructured Viscous Grid Generator,” AIAA Paper No. 96-0031.
27.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
,
1
, p.
5
5
.
28.
Menter, F. R., and Rumsey, C. L., 1994, “Assessment of Two-Equation Turbulence Models for Transonic Flows,” Paper No. AIAA 94-2343.
29.
Morton, S. A., Forsythe, J. R., Mitchell, A. M., and Hajek, D., 2002, “DES and RANS Simulations of Delta Wing Vortical Flows,” Paper No. AIAA 2002-0587.
30.
Shur, M., Spalart, P. R., Strelets, M., and Travin, A., 1999, “Detached Eddy Simulation of an Airfoil at High Angle of Attack,” 4th International Symposium of Engineering Turbulence Modeling and Measurements, Corsica, May 24–26.
31.
Morton, S. A., Forsythe, J. R., Squires, K. D., and Wurtzler, K. E., 2002, “Assessment of Unstructured Grids for Detached-Eddy Simulation of High Reynolds Number Separated Flows,” 8th International Conference on Numerical Grid Generation in Computational Field Simulations, June.
You do not currently have access to this content.