A new concept of particle image velocimetry (PIV) for turbulence control is introduced. The PIV method is used to measure the flow and supply information on the turbulence quantities on-line for a control station connected to an actuator for flow manipulation. With this “closed-loop” system of PIV and PID controllers, it is possible to control increase or decrease turbulence quantities or length scales. Special techniques for the on-line measurement are developed. The mean velocity is computed with a moving time average operator and the Reynolds decomposition is applied for the calculation of the Reynolds stresses, velocity fluctuations, or other instantaneous turbulence quantities. The control concept is tested in a backward-facing step with a DC-motor based actuator for mixing of the near wall flow. A length-scale estimate similar to the integral scale and the Reynolds shear stress are calculated on-line. The results show it is possible to control the turbulence and for example to compensate the disturbance on the Reynolds shear stress caused by a manual change in flow velocity. The control frequency is quite slow (e.g., 0.1–100 Hz), limited primarily by the image-grabbing operations and the computation of the velocity vectors in the PIV station. For this reason the method is applicable for slow processes, e.g., to steer the mixing processes or more generally to manage the turbulence level or the length scales.

1.
Prandtl, L., 1904, “U¨ber Flu¨ssigkeitsbewegung bei sehr kleiner Reibung,” Proc. Third Int. Math. Cong., Heidelberg, pp. 484–491.
2.
Gad-el-Hak
,
M.
,
1989
, “
Flow Control
,”
Appl. Mech. Rev.
,
42
(
10
), pp.
261
293
.
3.
Lumley
,
J.
, and
Blossey
,
P.
,
1998
, “
Control of Turbulence
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
311
327
.
4.
McManus
,
K.
,
Poinsot
,
T.
, and
Candel
,
S. M.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
, pp.
1
29
.
5.
Gad-el-Hak
,
M.
,
1994
, “
Interactive Control of Turbulent Boundary Layers: A Futuristic Overview
,”
AIAA J.
,
32
(
9
), pp.
1753
1765
.
6.
Chun
,
S.
,
Lee
,
I.
, and
Sung
,
H. J.
,
1999
, “
Effect of Spanwise-Varying Local Forcing on Turbulent Separated Flow Over a Backward-Facing Step
,”
Exp. Fluids
,
26
, pp.
437
440
.
7.
Lai
,
J. C. S.
,
Yue
,
M.
, and
Platzer
,
F.
,
2002
, “
Control of Backward-Facing Step Flow Using a Flapping Foil
,”
Exp. Fluids
,
32
, pp.
44
54
.
8.
Rathnasingham
,
R.
, and
Breuer
,
K. S.
,
1997
, “
System Identification and Control of a Turbulent Boundary Layer
,”
Phys. Fluids
,
9
(
7
), pp.
1867
1869
.
9.
Jacobson
,
S. A.
, and
Reynolds
,
W. C.
,
1998
, “
Active Control of Streamwise Vortices and Streaks in Boundary Layers
,”
J. Fluid Mech.
,
360
, pp.
179
211
.
10.
Piirto, M., and Saarenrinne, P., 1999, “Turbulence Length Scale Estimation With PIV,” 8th International Conference on Laser Anemometry Advances and Applications, Rome.
11.
Piirto
,
M.
,
Ihalainen
,
H.
,
Eloranta
,
H.
, and
Saarenrinne
,
P.
,
2001
, “
2D Spectral and Turbulence Length Scale Estimation With PIV
,”
J. of Visual.
,
4
(
1
) pp.
39
49
.
12.
Eloranta, H., Saarenrinne P., and Piirto, M., 2000, “Identification and Analysis of Coherent Structures in PIV-Data,” Pivnet Task5, ERCOFTAC SIG 32 Workshop, Lisbon.
13.
Tomkins, C. D., and Adrian, R. J., 2000, “Comparison of Energetic Spanwise Modes in a Boundary Layer and Channel,” 10th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Portugal.
14.
Yoda
,
M.
, and
Westerweel
,
J.
,
2001
, “
Particle Image Velocimetry Studies of a Boundary Layer Perturbed by Localized Suction
,”
Exp. Fluids
,
30
, pp.
239
245
.
15.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1994
, “
Active Turbulence Control for Drag Reduction in Wall-Bounded Flows
,”
J. Fluid Mech.
,
262
, pp.
75
110
.
16.
Baur, T., and Ko¨ngeter, J., 1999, “PIV With High Temporal Resolution for the Determination of Local Pressure Reductions From Coherent Turbulence Phenomena,” 3rd International Workshop on Particle Image Velocimetry, Santa Barbara, CA.
17.
Piirto, M., Eloranta, H., and Saarenrinne P., 2000, “Interactive Software for Turbulence Analysis From PIV Vector Fields,” 10th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon.
18.
Saarenrinne
,
P.
, and
Piirto
,
M.
,
2000
, “
Turbulent Kinetic Energy Dissipation Rate Estimation From PIV Velocity Vector Fields
,”
Exp. Fluids
,
29
, pp.
300
307
.
19.
Scarano
,
F.
, and
Riethmuller
,
M. L.
,
1999
, “
Iterative Multigrid Approach in PIV Image Processing With Discrete Window Offset
,”
Exp. Fluids
,
26
, pp.
513
523
.
20.
Sousa, J. M. M., Freek, C., and Pereia, J. F. C., 1998, “PIV Measurements of Turbulence Statistics in the Three-Dimensional Flow Over a Surface-Mounted Obstacle,” Proc. of Ninth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Portugal.
21.
Westerweel
,
J.
,
1997
, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
, pp.
1379
1392
.
22.
Spalding
,
D. B.
,
1961
, “
A Single Formula for the Law of the Wall
,”
ASME J. Appl. Mech.
,
28
, pp.
455
457
.
23.
Piirto, M., Koivo, H., and Virtanen P., 1989, “Portable Data Acquisition and Control Station for Self-Tuning Control Applications,” 1989 IEEE International Conference on Control and Applications, Jerusalem.
24.
A˚stro¨m, K. J., and Wittenmark, B., 1995, Adaptive Control, 2nd Ed., Addison-Wesley, Reading, MA, p. 580.
25.
Piirto, M., Jussila, T., Koivo, H., and Virtanen P., 1989, “Advanced Portable Control Station,” IFAC Symposium on Low Cost Automation, Milan.
26.
Hinze, J. O., 1975, Turbulence, McGraw-Hill, New York, pp. 39–58.
27.
Adrian
,
R. J.
,
Christensen
,
K. T.
, and
Liu
,
Z. C.
,
2000
, “
Analysis and Interpretation of Instantaneous Turbulent Velocity Fields
,”
Exp. Fluids
,
29
, pp.
275
290
.
You do not currently have access to this content.