Two-dimensional and three-dimensional, unsteady state Reynolds-averaged Navier-Stokes (RANS) equations with standard k-ε turbulence models were solved within an entire stage of a diffuser pump to investigate pressure fluctuations due to the interaction between impeller and diffuser vanes. A complete solution of transient flows due to the interaction between components in the whole pump without approximating the blade count ratio of impeller to diffuser was obtained by employing an Arbitrary Sliding Mesh. The unsteady numerical results were compared with experimental data and values calculated by the singularity method. As a result of the present study, the Navier-Stokes code with the k-ε model is found to be capable of predicting pressure fluctuations in the diffuser. Furthermore, extensive numerical studies identified sources contributing to the pressure fluctuations in the diffuser, and helped to understand the mechanism of impeller-diffuser interactions in the diffuser pump.

1.
Arndt
,
N.
,
Acosta
,
A J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1989
, “
Rotor/Stator Interaction in a Diffuser Pump
,”
ASME J. Turbomach.
,
111
, pp.
213
221
.
2.
Arndt
,
N.
,
Acosta
,
A J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1990
, “
Experimental Investigation of Rotor/Stator Interaction in a Centrifugal Pump with Several Vaned Diffusers
,”
ASME J. Turbomach.
,
111
, pp.
213
221
.
3.
Tsukamoto, H., Uno, M., Hamafuku, H., and Okamura. T., 1995, “Pressure Fluctuation Downstream of a Diffuser Pump Impeller,” The 2nd Joint ASME/JSME Fluids Engineering Conference, Forum of Unsteady Flow, FED-Vol. 216, pp. 133–138.
4.
Dring
,
R. P.
,
Joslyn
,
H. D.
,
Hardwin
,
L. W.
, and
Wagner
,
J. H.
,
1982
Turbine Rotor-Stator Interaction
,”
ASME J. Eng. Power
,
104
, pp.
729
742
.
5.
Gallus, H. E., 1979, “Unsteady Flows in Turbines,” VKI Lecture Series LS-1979-3, Vol. 2, Von Karman Institute.
6.
Fleeter
,
S.
,
Jay
,
R. L.
, and
Bennett
,
W. A.
,
1981
, “
Wake Induced Time-Variant Fluids Aerodynamics Including Rotor-Stator Axial Spacing Effects
,”
ASME J. Fluids Eng.
,
103
, pp.
59
66
.
7.
Rai, M. M., 1987, “Unsteady Three-Dimensional Navier-Stokes Simulations of Turbine Rotor Stator Interactions,” AIAA Paper No. 87–2058.
8.
Giles
,
M. B.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
J. Propul. Power
,
4
, No.
4
, pp.
356
362
.
9.
Lewis
,
J. P.
,
Delaney
,
R. A.
, and
Hall
,
E. J.
,
1989
, “
Numerical Prediction of Turbine Vane-Blade Aerodynamic Interaction
,”
ASME J. Turbomach.
,
111
, pp.
387
393
.
10.
Rao. K. V., and Delaney, R. A., 1992, “Investigation of Unsteady Flow Through a Transonic Turbine Stage, Part. I, Analysis,” AIAA Paper No. 90-2408.
11.
Sharma
,
O. P.
,
Pickett
,
G. F.
, and
Ni
,
R. H.
,
1992
, “
Assessment of Unsteady Flows in Turbines
,”
ASME J. Turbomach.
,
114
, pp.
79
90
.
12.
Ho
,
Y.-H.
, and
Lakshiminarayana
,
B.
,
1995
, “
Computation of Unsteady Viscous Flow Through Turbomachinery Blade Row Due to Upstream Rotor Wakes
,”
ASME J. Turbomach.
,
117
, pp.
541
552
.
13.
Valkov
,
T.
, and
Tan
,
C. S.
,
1995
, “
Control of the Unsteady Flow in a Stator Blade Row Interacting with Upstream Moving Wakes
,”
ASME J. Turbomach.
,
117
, pp.
97
105
.
14.
Arnone
,
A.
, and
Pacciani
,
R.
,
1996
, “
Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method
,”
ASME J. Turbomach.
,
118
, pp.
679
689
.
15.
Chung
,
M.-H.
, and
Wo
,
A. M.
,
1997
, “
Navier-Stokes and Potential Calculations of Axial Spacing Effect on Vortical and potential Disturbances and Gust Response in an Axial Compressor
,”
ASME J. Turbomach.
,
119
, pp.
472
481
.
16.
Dong
,
R.
,
Chu
,
S.
, and
Katz
,
J.
,
1992
, “
Quantitative-Visualization of the Flow Within the volute of a Centrifugal Pump. Part B: Results
,”
ASME J. Fluids Eng.
,
114
, No.
3
, pp.
396
403
.
17.
Akin
,
O.
, and
Rockwell
,
D.
,
1994
, “
Flow Structure in a Radial Flow Pumping System Using High-Image-Density Particle Image Velocimetry
,”
ASME J. Fluids Eng.
,
116
, pp.
538
544
.
18.
Ubaldi
,
M.
,
Zunino
,
P.
,
Barigozzi
,
G.
, and
Gattanei
,
A.
,
1996
, “
An Experimental Investigation of Stator Induced Unsteadiness on Centrifugal Impeller Outflow
,”
ASME J. Turbomach.
,
118
, pp.
41
54
.
19.
Fortes-Patella, R., Longatte, F., Kueny, J-L., and Croba, D., 1995, “Numerical Analysis of Unsteady Flow in a Centrifugal Pump,” ASME Fluid Machinery, FED-Vol. 222, pp. 41–46.
20.
Bert, P. F., Combes, J. F., and Kueny, J. L., 1996, “Unsteady Flow Calculation in a Centrifugal Pump Using a Finite Element Method,” XVIII IAHR Symposium on Hydraulic Machinery and Cavitation, Valencia, Spain.
21.
Schulz
,
H.
,
Greim
,
R.
, and
Volgmann
,
W.
,
1996
, “
Calculation of Three-Dimensional Viscous Flow in Hydrodynamic Torque Converters
,”
ASME J. Turbomach.
,
118
, pp.
578
589
.
22.
Qin
,
W.
, and
Tsukamoto
,
H.
,
1997
, “
Theoretical Study of Pressure Fluctuations Downstream of a Diffuser Pump Impeller-Part 1: Fundamental Analysis on Rotor-Stator Interaction
,”
ASME J. Fluids Eng.
,
119
, pp.
647
652
.
23.
Ruprecht, A., Heitele, M., Helmrich, T., Faigle, P., and Moser, W., 1998, “Numerical Modeling of Unsteady Flow in a Francis Turbine,” XIX IAHR Symposium on Hydraulic Machinery and Cavitation, Singapore.
24.
STAR-CD Documentation, Version 3.0, Computational Dynamics Ltd., London, 1996.
25.
Schachenmann, A., Muggli, F., and Guelich, J. F., 1993, “Comparison of Three Navier-Stokes Codes with LDA-Measurements on an Industrial Radial Pump Impeller,” ASME FED-Vol. 154, Pumping Machinery, pp. 247–252.
26.
Qin, W., 1995 “Study of Pressure Fluctuations Downstream a Diffuser Pump Impeller Due to Rotor-Stator Interaction,” Ph.D. thesis (in Japanese), Kyushu Institute of Technology, Japan.
You do not currently have access to this content.