Particle transport in a three-dimensional, temporally evolving mixing layer has been calculated using large eddy simulation of the incompressible Navier-Stokes equations. The initial fluid velocity field was obtained from a separate simulation of fully developed turbulent channel flow. The momentum thickness Reynolds number ranged from 710 in the initial field to 4460 at the end of the calculation. Following a short development period, the layer evolves nearly self-similarly. Fluid velocity statistics are in good agreement with both the direct numerical simulation results of Rogers and Moser (1994) and experimental measurements of Bell and Mehta (1990). Particles were treated in a Lagrangian manner by solving the equation of motion for an ensemble of 20,000 particles. The particles have the same material properties as in the experiments of Hishida et al. (1992), i.e., glass beads with diameters of 42, 72, and 135 μm. Particle motion is governed by drag and gravity, particle-particle collisions are neglected, and the coupling is from fluid to particles only. In general, the mean and fluctuating particle velocities are in reasonable agreement with the experimental measurements of Hishida et al. (1992). Consistent with previous studies, the Stokes number (St) corresponding to maximum dispersion increases as the flow evolves when defined using a fixed fluid timescale. Definition of the Stokes number using the time-dependent vorticity thickness, however, shows a maximum in dispersion throughout the simulation for St ≈ 1.

*Bubbles, Drops and Particles*, Academic Press, New York.

*Particulate Two-Phase Flow*, Roco, M. C., ed., Butterworth-Heinemann, Boston, pp. 627–669.

*High-Speed-Flight Propulsion Systems, Progress in Astronautics and Aeronautics*, Murthy, S. N. B. and Curran, E. T., eds., pp. 265–340.

*Gas-Particle Flows*, FED-Vol. 228, pp. 347–357.

*Turbulent Shear Flow 9*, F. Durst, N. Kasagi, B. E. Launder, F. W. Schmidt, J. H. Whitelaw, eds., Springer-Verlag (Heidelberg), pp. 85–115.

*Sixth Workshop on Two-Phase Flow Predictions*, Erlangen, Germany.

*Gas-Particle Flows*, FED-Vol. 228, pp. 335–345.

*AIAA paper*96-0683, pp. 1–11.