Abstract

Multistage fracturing in horizontal wells has been widely applied in shale reservoirs over the past decades, contributing to substantial productivity gains through the generation of a complex fracture network. The optimal cluster spacing and stage spacing in shale wells are determined based on the in situ geological characteristics and the induced stress interference generated by hydraulic fractures. The study of induced stress is particularly valuable because the in situ geological conditions are unable to be altered. In this article, an analytical method, which provides a conducive tool to compute induced stress, was introduced to explore the induced stress interference on complex hydraulic fracture networks. Commencing with induced stress around a single hydraulic fracture, the composite stress field was then computed with numerical simulation. The innovation of this article is that it proposed and verified horizontal reversal criteria, vertical reversal criteria, and the optimal cluster or stage spacing for forming the complex fracture network. The research obtained from this study will work as a beneficial resource for completion and reservoir engineers, empowering them to optimize the cluster spacing and stage spacing to maximize simulated reservoir volume in the shale reservoir development.

References

1.
Wiley
,
C.
,
Barree
,
B.
,
Eberhard
,
M.
, and
Lantz
,
T.
,
2004
, “
Improved Horizontal Well Stimulations in the Bakken Formation, Williston Basin, Montana
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
, SPE Paper No. 90697-MS.
2.
Waters
,
G. A.
,
Dean
,
B. K.
,
Downie
,
R. C.
,
Kerrihard
,
K. J.
,
Austbo
,
L.
, and
Mcpherson
,
B.
,
2009
, “
Simultaneous Hydraulic Fracturing of Adjacent Horizontal Wells in the Woodford Shale
,”
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Jan. 19–21
, SPE Paper No. 119635-MS.
3.
Beckwith
,
R.
,
2011
, “
Shale Gas: Promising Prospects Worldwide
,”
J. Pet. Technol.
,
63
(
7
), pp.
37
40
.
4.
Ibrahim
,
A. F.
,
2024
, “
Optimizing Cluster Spacing in Multistage Hydraulically Fractured Shale Gas Wells: Balancing Fracture Interference and Stress Shadow Impact
,”
J. Pet. Explor. Prod. Technol.
,
14
(
7
), pp.
2297
2313
.
5.
Tiab
,
D.
,
Lu
,
J.
,
Nguyen
,
H.
, and
Owayed
,
J.
,
2010
, “
Evaluation of Fracture Asymmetry of Finite-Conductivity Fractured Wells
,”
ASME J. Energy Resour. Technol.
,
132
(
1
), p.
012901
.
6.
Rahman
,
M. M.
, and
Rahman
,
M. K.
,
2012
, “
Optimizing Hydraulic Fracture to Manage Sand Production by Predicting Critical Drawdown Pressure in Gas Well
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
013101
.
7.
Fisher
,
M. K.
,
Heinze
,
J. R.
,
Harris
,
C. D.
,
Davidson
,
B. M.
,
Wright
,
C. A.
, and
Dunn
,
K. P.
,
2004
, “
Optimizing Horizontal Completion Techniques in the Barnett Shale Using Microseismic Fracture Mapping
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
, SPE Paper No. 90051-MS.
8.
Maxwell
,
S. C.
,
Urbancik
,
T. I.
,
Steinsberger
,
N.
, and
Zinno
,
R.
,
2002
, “
Microseismic Imaging of Hydraulic Fracture Complexity in the Barnett Shale
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Sept. 29–Oct. 2
, SPE Paper No. 774440-MS.
9.
Jiang
,
T. X.
,
2013
, “
The Fracture Complexity Index of Horizontal Wells in Shale Oil and Gas Reservoirs
,”
Pet. Drill. Technol.
,
41
(
2
), pp.
7
12
.
10.
Nolte
,
K. G.
, and
Smith
,
M. B.
,
1981
, “
Interpretation of Fracturing Pressures
,”
J. Pet. Technol.
,
33
(
9
), pp.
1767
1775
(SPE Paper No. 8297-PA).
11.
Guo
,
J. C.
,
2020
,
Theory of Multi-stage and Multi-cluster Fracturing for Horizontal Well of Shale Reservoir
,
Science Press
,
Beijing
, p.
47
.
12.
Shi
,
S.
,
Wang
,
M.
,
Tang
,
W.
,
Pan
,
Y.
,
Jin
,
H.
,
He
,
J.
,
Hou
,
L.
, et al
,
2024
, “
Study of Stress Field Induced by Natural Fracture and Its Influence on Hydraulic Fracture Propagation
,”
J. Pet. Explor. Prod. Technol.
,
14
(
4
), pp.
1085
1099
.
13.
Sneddon
,
I. N.
,
1946
, “
The Distribution of Stress in the Neighborhood of a Crack in an Elastic Solid
,”
Proc. R. Soc. Lond. Ser. A
,
187
(
1009
), pp.
229
260
.
14.
Sneddon
,
I. N.
, and
Elliott
,
H. A.
,
1946
, “
The Opening of a Griffith Crack Under Internal Pressure
,”
Q. Appl. Math.
,
4
(
3
), pp.
262
267
.
15.
Warpinski
,
N. R.
, and
Teufel
,
L. W.
,
1987
, “
Influence of Geologic Discontinuities on Hydraulic Fracture Propagation
,”
J. Pet. Technol.
,
139
(
2
), pp.
209
220
.
16.
Warpinski
,
N. R.
, and
Branagan
,
P. T.
,
1989
, “
Altered-Stress Fracturing
,”
J. Pet. Technol.
,
41
(
9
), pp.
990
997
.
17.
Warpinski
,
N. R.
,
Wolhart
,
S. L.
, and
Wright
,
C. A.
,
2004
, “
Analysis and Prediction of Microseismicity Induced by Hydraulic Fracturing
,”
SPE J.
,
9
(
1
), pp.
24
33
.
18.
Cheng
,
W.
, and
Jin
,
Y.
,
2018
,
Numerical Simulation Technology for Hydraulic Fracturing Based on Boundary Element Method
,
Science Press
,
Beijing
, p.
50
.
19.
Cheng
,
W.
,
Jiang
,
G. S.
,
Tian
,
H.
, and
Zhu
,
Q.
,
2017
, “
Numerical Investigations of the Fracture Geometry and Fluid Distribution of Multistage Consecutive and Alternative Fracturing in a Horizontal Well
,”
Comput. Geotech.
,
92
, pp.
41
56
.
20.
Cheng
,
W.
,
Jiang
,
G. S.
, and
Jin
,
Y.
,
2017
, “
Numerical Simulation of Fracture Path and Nonlinear Closure for Simultaneous and Sequential Fracturing in a Horizontal Well
,”
Comput. Geotech.
,
88
, pp.
242
255
.
21.
Guan
,
B.
,
Li
,
S.
,
Liu
,
J.
,
Zhang
,
L.
, and
Chen
,
S.
,
2020
, “
Analysis and Optimization of Multiple Factors Influencing Fracturing Induced Stress Field
,”
J. Pet. Explor. Prod. Technol.
,
10
(
1
), pp.
171
181
.
22.
Zhang
,
F.
, and
Tang
,
Y.
,
2022
, “
Mechanical Analysis and Numerical Simulation of a Forming Fracture Network in the Roof of an Outburst Coal Seam by Multi-staged Fracturing
,”
Arab. J. Geosci.
,
15
(
4
), p.
349
.
23.
Tian
,
S.
,
Li
,
G.
,
Sheng
,
M.
, and
Huang
,
Z.
,
2020
,
Basic Theory and Methods of Fracturing and Completion for Shale Gas Horizontal Wells
,
Science Press
,
Beijing
, p.
71
.
24.
Huang
,
R.
,
Lei
,
Q.
,
Weng
,
D. W.
,
Chen
,
J. B.
, and
Liang
,
H. B.
,
2022
, “
Analysis of the Induced Stress Fields Around Hydraulic Fractures Considering the Influence of Natural Fractures and Bedding Planes
,”
ACS Omega
,
8
(
1
), pp.
1206
1219
.
25.
Jo
,
H.
,
2012
, “
Optimizing Fracture Spacing to Induce Complex Fractures in a Hydraulically Fractured Horizontal Wellbore
,”
SPE Americas Unconventional Resources Conference
,
Pittsburgh, PA
,
June 5–7
, SPE Paper No. 154930-MS.
26.
Olson
,
J.
, and
Taleghani
,
A. D.
,
2009
, “
Modeling Simultaneous Growth of Multiple Hydraulic Fractures and Their Interaction With Natural Fractures
,”
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Jan. 19–21
, SPE Paper No. 119739-MS.
27.
Zeng
,
Y. J.
,
Zhang
,
X.
, and
Zhang
,
B. P.
,
2015
, “
Stress Redistribution in Multi-stage Hydraulic Fracturing of Horizontal Wells in Shales
,”
Pet. Sci.
,
12
(
4
), pp.
628
635
.
You do not currently have access to this content.