Abstract

Efficiently classifying potential areas of remaining oil is essential for enhancing the recovery in high water cut reservoir. The distribution of remaining oil is complex and challenging to mobilize due to temporal evolution and spatial variation in long-term waterflood development. Currently, reservoir classification relies on manual experience and unsupervised machine learning, both of which have limitations. Manual classification is constrained by human understanding, leading to inaccuracies, while unsupervised learning lacks adherence to reservoir theory, resulting in a possible lack of physical interpretability. This article introduces the Beluga whale optimization and the improved temporal convolutional network (BWO-ITCN) model, a novel prediction classification model that combines intelligent classification with reservoir theory constraints. The structure of the ITCN model was improved by changing the serial structure to the parallel pooling structure, in order to extract the features of time series data. The BWO-ITCN model incorporates expert experience by considering five dynamic and one static indicators for evaluating potential areas. It aims to identify remaining oil potential areas by learning the evaluation indicators in spatial variations and temporal evolution. The BWO algorithm enhances the classification precision by optimizing hyperparameters, particularly, blending samples. The experimental results demonstrate that the BWO-ITCN model achieves an accuracy of 94.25%, a precision of 94.1%, a recall rate of 93.82%, and an F1-score of 93.83%. Notably, the overall accuracy of a spatiotemporal model is higher than a nonspatiotemporal model. This autonomous classification model effectively addresses the challenges in classifying potential areas, simplifies the process, and offers valuable insights for development.

References

1.
Zhou
,
Y.
,
Li
,
Z. P.
,
Jing
,
C.
,
Sun
,
W.
, and
Li
,
X.
,
2016
, “
Distribution of Macroscopic Remaining-Oil Potential Based on Flow-Unit
,”
Spec. Oil Gas Reservoirs
,
23
(
6
), pp.
35
39
.
2.
Dou
,
Q. F.
,
Huang
,
S. W.
, and
Wang
,
S. H.
,
2002
, “
Evaluating Low-Permeability Reservoirs of Hongliuquan Lithological Trap
,”
Pet. Explor. Dev.
,
20
(
1
), pp.
87
89
.
3.
Kang
,
Y.
,
Wang
,
J.
,
Jiang
,
S.
,
Zhang
,
B.
,
Mao
,
D.
, and
Gu
,
J.
,
2017
, “
Application of Quantitative Indicators in Quantitative Evaluation of Coalbed Methane Development Potential
,”
Acta Petrol. Sin.
,
38
(
6
), pp.
677
686
.
4.
Chen
,
J. P.
,
Xiang
,
J.
,
Hu
,
Q.
,
Yang
,
W.
,
Lai
,
Z.
,
Hu
,
B.
, and
Wei
,
W.
,
2016
, “
Quantitative Geoscience and Geological Big Data Development: A Review
,”
Acta Geol. Sin.
,
90
(
4
), pp.
1490
1515
.
5.
Jahromi
,
H. N.
, and
Jorge
,
A. M.
,
2019
, “
Data Science Applications in Oil and Gas Exploration: An In-Depth Perspective
,”
Proc. Inst. Civil Eng. Energy
,
172
(
3
), pp.
122
133
.
6.
Lai
,
J.
,
Wang
,
G. W.
,
Fan
,
Q. X.
,
Zhao
,
F.
,
Zhao
,
X.
,
Li
,
Y. H.
,
Zhao
,
Y. D.
, and
Pang
,
X. J.
,
2023
, “
Toward the Scientific Interpretation of Geophysical Well Logs: Typical Misunderstandings and Countermeasures
,”
Surv. Geophys.
,
44
(
2
), pp.
463
494
.
7.
Ding
,
S. W.
,
Jiang
,
H. Q.
,
Zhou
,
D. Y.
,
Zhao
,
J.
,
Kuang
,
X. Y.
,
Wang
,
Q.
, and
Wang
,
P.
,
2016
, “
A New Method for Quantitatively Evaluating the Remaining Oil Potential of Reservoir at Medium-High Water-Cut Stage and Its Application
,”
Complex Hydrocarbon Reservoirs
,
9
(
1
), pp.
41
45
.
8.
Liu
,
L.
,
Zhang
,
X.
,
Wei
,
X.
,
Liu
,
H.
,
Huang
,
Y.
, and
Kang
,
Y.
,
2022
, “
Classification and Evaluation Method of Remaining Oil in Ultra-High Water Cut Stage
,”
Pet. Geol. Recovery Effic.
,
29
(
5
), pp.
83
90
.
9.
Zhang
,
Y.
,
Lu
,
F. M.
,
Cai
,
M. J.
,
Yang
,
Y.
,
Li
,
J.
,
Guo
,
Z.
,
Wang
,
R.
, and
Zheng
,
R.
,
2020
, “
Physical Simulation Experiments of Remaining Oil Distribution and Production in Alluvial Fans Controlled by Dynamic and Static Factors
,”
J. Pet. Sci. Eng.
,
195
, p.
107714
.
10.
Zhu
,
L. Q.
,
Zhou
,
X. Q.
,
Sun
,
J.
,
Liu
,
Y.
,
Wang
,
J.
, and
Wu
,
S.
,
2023
, “
Reservoir Classification and Log Prediction of Gas Hydrate Occurrence in the Qiongdongnan Basin, South China Sea
,”
Front. Mar. Sci.
,
10
, p.
1055843
.
11.
Al-Tashi
,
Q.
,
Akhir
,
E. A. P.
,
Abdulkadir
,
S. J.
,
Mirjalili
,
S.
,
Shami
,
T. M.
,
Alhusssian
,
H.
,
Alqushaibi
,
A.
,
Alwadain
,
A.
,
Balogun
,
A. O.
, and
Al-Zidi
,
N.
,
2021
, “
Classification of Reservoir Recovery Factor for Oil and Gas Reservoirs: A Multi-Objective Feature Selection Approach
,”
J. Mar. Sci. Eng.
,
9
(
8
), p.
888
.
12.
Wang
,
B.
,
Liu
,
X. J.
, and
Sima
,
L. Q.
,
2019
, “
Grading Evaluation and Prediction of Fracture-Cavity Reservoirs in Cambrian Longwangmiao Formation of Moxi Area, Sichuan Basin, SW China
,”
Pet. Explor. Dev.
,
46
(
2
), pp.
301
313
.
13.
Song
,
H. Q.
,
Zhu
,
J. W.
,
Wei
,
C. J.
,
Wang
,
J.
,
Du
,
S.
, and
Xie
,
C.
,
2022
, “
Data-Driven Physics-Informed Interpolation Evolution Combining Historical-Predicted Knowledge for Remaining Oil Distribution Prediction
,”
J. Pet. Sci. Eng.
,
217
, p.
110795
.
14.
Zhang
,
Q.
,
Wei
,
C.
,
Wang
,
Y.
,
Du
,
S.
,
Zhou
,
Y.
, and
Song
,
H.
,
2019
, “
Potential for Prediction of Water Saturation Distribution in Reservoirs Utilizing Machine Learning Methods
,”
Energies
,
12
(
19
), p.
3597
.
15.
Ibrahim
,
A. F.
,
Elkatatny
,
S.
,
Abdelraouf
,
Y.
, and
Al Ramadan
,
M.
,
2022
, “
Application of Various Machine Learning Techniques in Predicting Water Saturation in Tight Gas Sandstone Formation
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
083009
.
16.
Liu
,
H.
,
Tian
,
Z.
,
Liu
,
B.
,
Guo
,
R.
,
Shi
,
K. B.
, and
Ye
,
Y. F.
,
2019
, “
Classification and Prediction of Giant Thick Strongly Heterogeneous Carbonate Reservoirs in the Middle East Area: A Case Study of Mid-Cretaceous Mishrif Formation in the W Oilfield of Iraq
,”
Acta Petrol. Sin.
,
40
(
6
), pp.
677
691
.
17.
Li
,
D.
, and
Shi
,
G.
,
2018
, “
Optimization of Common Data Mining Algorithms for Petroleum Exploration and Development
,”
Acta Petrol. Sin.
,
39
(
2
), pp.
240
246
.
18.
Hu
,
W. L.
,
Xin
,
X. K.
,
Zou
,
X. B.
,
Li
,
L.
,
Niu
,
S.
,
Li
,
Q.
,
Yu
,
G.
, and
Wang
,
L.
,
2021
, “
Application of Production Splitting Method Based on Inverse Distance Weighted Interpolation in X Oilfield
,”
Energy Rep.
,
7
, pp.
850
855
.
19.
Wang
,
D. G.
,
Li
,
Y.
,
Hu
,
Y. L.
,
Li
,
B.
,
Deng
,
X.
, and
Liu
,
Z.
,
2016
, “
Integrated Dynamic Evaluation of Depletion-Drive Performance in Naturally Fractured-Vuggy Carbonate Reservoirs Using DPSO-FCM Clustering
,”
Fuel
,
181
, pp.
996
1010
.
20.
Qu
,
L.
,
Li
,
M.
,
Wu
,
Z.
,
Zhang
,
L.
,
Feng
,
L.
, and
Deng
,
L.
,
2023
, “
Application of Unascertained Measure Model in Reservoir Potential Evaluation of Nanpu H Fault Block
,”
Reservoir Eval. Dev.
,
13
(
2
), pp.
190
199
.
21.
Sun
,
L.
,
Li
,
Y.
, and
Li
,
B. Z.
,
2022
, “
Classified Evaluation Methods and Waterflood Development Strategies for Carbonate Reservoirs in the Middle East
,”
Acta Petrol. Sin.
,
43
(
2
), pp.
270
280
.
22.
Sinaga
,
K. P.
, and
Yang
,
M. S.
,
2020
, “
Unsupervised K-Means Clustering Algorithm
,”
IEEE Access
,
8
, pp.
80716
80727
.
23.
Zoppi
,
T.
,
Ceccarelli
,
A.
, and
Bondavalli
,
A.
,
2021
, “
Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application
,”
IEEE Access
,
9
, pp.
90603
90615
.
24.
Diwu
,
P.-X.
,
Zhao
,
B.
,
Wang
,
H.
,
Wen
,
C.
,
Nie
,
S.
,
Wei
,
W.
,
Li
,
A. Q.
,
Xu
,
J.
, and
Zhang
,
F.
,
2024
, “
Machine Learning Classification Algorithm Screening for the Main Controlling Factors of Heavy Oil CO2 Huff and Puff
,”
Pet. Res.
,
9
(
4
), pp.
541
552
.
25.
Zhong
,
C. T.
,
Li
,
G.
, and
Meng
,
Z.
,
2022
, “
Beluga Whale Optimization: A Novel Nature-Inspired Metaheuristic Algorithm
,”
Knowl. Based Syst.
,
251
, p.
109215
.
26.
Houssein
,
E. H.
, and
Sayed
,
A.
,
2023
, “
Dynamic Candidate Solution Boosted Beluga Whale Optimization Algorithm for Biomedical Classification
,”
Mathematics
,
11
(
3
), p.
707
.
27.
Ma
,
Y.
,
Chang
,
Q.
,
Lu
,
H. Z.
, and
Liu
,
J. L.
,
2018
, “
Reconstruct Recurrent Neural Networks via Flexible Sub-Models for Time Series Classification
,”
Appl. Sci. Basel
,
8
(
4
), p.
630
.
28.
Zhang
,
Y. Q.
,
Ma
,
Y. M.
, and
Liu
,
Y. H.
,
2022
, “
Convolution-Bidirectional Temporal Convolutional Network for Protein Secondary Structure Prediction
,”
IEEE Access
,
10
, pp.
117469
117476
.
29.
Geng
,
L.
,
Wu
,
H.
,
Zhang
,
F.
,
Xiao
,
Z.
, and
Li
,
X.
,
2023
, “
Classification Method of Heartbeat Confusion Signals of Hatching Eggs Based on TCN and Transformer
,”
Trans. Chin. Soc. Agric. Mach.
,
54
(
8
), pp.
296
308
.
30.
Zhang
,
X.
, and
You
,
J. L.
,
2020
, “
A Gated Dilated Causal Convolution Based Encoder-Decoder for Network Traffic Forecasting
,”
IEEE Access
,
8
, pp.
6087
6097
.
31.
Shi
,
C.
,
Wang
,
Y.
,
Xiao
,
H.
, and
Li
,
H. Y.
,
2022
, “
Extended Convolution Model for Computing the Far-Field Directivity of an Amplitude-Modulated Parametric Loudspeaker
,”
J. Phys. D: Appl. Phys.
,
55
, p.
24
.
32.
Dubinin
,
I.
, and
Effenberger
,
F.
,
2024
, “
Fading Memory as Inductive Bias in Remaining Recurrent Networks
,”
Neural Netw.
,
173
, p.
106179
.
33.
Gao
,
S.
,
Wu
,
R.
,
Liu
,
S. B.
,
Erkan
,
U.
,
Toktas
,
A.
,
Liu
,
J. F.
, and
Tang
,
X. L.
,
2024
, “
MSLID-TCN: Multi-Stage Linear-Index Dilated Temporal Convolutional Network for Temporal Action Segmentation
,”
Int. J. Mach. Learn. Cybern.
,
16
, pp.
567
581
.
34.
Liu
,
M. P.
,
Qin
,
H.
,
Cao
,
R.
, and
Deng
,
S. H.
,
2022
, “
Short-Term Load Forecasting Based on Improved TCN and DenseNet
,”
IEEE Access
,
10
, pp.
115945
115957
.
35.
Korkmaz
,
D.
,
2021
, “
SolarNet: A Hybrid Reliable Model Based on Convolutional Neural Network and Variational Mode Decomposition for Hourly Photovoltaic Power Forecasting
,”
Appl. Energy
,
300
, p.
117410
.
36.
Zhu
,
J. M.
,
Geng
,
Y. G.
,
Li
,
W. B.
,
Li
,
X.
, and
He
,
Q. Z.
,
2022
, “
Fuzzy Decision-Making Analysis of Quantitative Stock Selection in VR Industry Based on Random Forest Model
,”
J. Funct. Spaces
,
2022
(
1
), p.
7556229
.
37.
Chen
,
F. Z.
,
Jiang
,
H. Q.
,
Li
,
J.
, and
Bai
,
X. H.
,
2011
, “
Quantitative Liquid Field Description Method and Its Application
,”
J. Oil Gas Technol.
,
33
(
12
), pp.
111
114
.
38.
Feng
,
Q.
,
Wang
,
B.
,
Wang
,
X.
,
Wang
,
S.
, and
Han
,
X.
,
2015
, “
Optimization of Well Patterns Based on Flow Field Intensity
,”
J. Southwest Pet. Univer. Sci. Technol. Ed.
,
37
(
4
), pp.
181
186
.
You do not currently have access to this content.