Abstract

When drilling in geothermal and deep formations, the rock-breaking mechanism of high-temperature formations is not clear. In this work, mechanical tests of rocks subjected to high temperatures were carried out, and rock-breaking models of bottom hole thermal stress dispersion and polycrystalline diamond compact (PDC) cutter were established. Aiming at efficient rock breaking pursued by drilling in high-temperature formation, rock-breaking simulations of PDC cutters with different front rake angles under the condition of temperature and confining pressure changes were carried out based on critical penetration depth. The mechanism of rock breaking is analyzed from the point of view of stress variation in the process of brittle rock breaking. The study shows that rock plasticity is enhanced after high temperature, and the temperature difference between the drilling fluid and bottom hole will make the outer part of the bottom hole shrink obviously. Under the conditions of this study, the optimal rock-breaking angle of the PDC cutter is 20 deg. The confining pressure of deep high-temperature formation will hinder rock breaking at a lower value range, and rocks under high confining pressure are more prone to brittle fracture. The increase of rotational speed has an obvious promotion stage for efficient rock breaking, and too large rotational speed will result in low brittle rock-breaking efficiency. These works are helpful in understanding the efficient brittle rock-breaking mechanism in high-temperature drilling, and can provide references for tooth design and rotational speed optimization of PDC bits.

References

1.
Mao
,
X.
,
Guo
,
D.
,
Luo
,
L.
, and
Wang
,
T.
,
2019
, “
The Global Development Process of Hot Dry Rock (Enhanced Geothermal System) and Its Geological Background
,”
Geol. Rev.
,
65
(
6
), pp.
1462
1472
.
2.
He
,
W.
,
Zhang
,
R.
,
Liu
,
L.
,
Chen
,
Z.
,
Shi
,
H.
,
Huang
,
Z.
,
Xiong
,
C.
,
Li
,
X.
,
Sun
,
J.
, and
Hu
,
C.
,
2023
, “
Numerical Simulation of Rock-Breaking Mechanisms by Triple-Ridged PDC Cutter in Hard Rocks
,”
Geoenergy Sci. Eng.
,
229
, p.
212148
.
3.
Beckers
,
K. F.
,
Lukawski
,
M. Z.
,
Anderson
,
B. J.
,
Moore
,
M. C.
, and
Tester
,
J. W.
,
2014
, “
Levelized Costs of Electricity and Direct-Use Heat From Enhanced Geothermal Systems
,”
J. Renewable Sustainable Energy
,
6
(
1
), p.
013141
.
4.
Xiao
,
M.
,
Guiling
,
W.
,
Dawei
,
H.
,
Yanguang
,
L.
,
Hui
,
Z.
, and
Feng
,
L.
,
2020
, “
Mechanical Properties of Granite Under Real-Time High Temperature and Three-Dimensional Stress
,”
Int. J. Rock Mech. Min. Sci.
,
136
, p.
104521
.
5.
Jin
,
P.
,
Hu
,
Y.
,
Shao
,
J.
,
Zhao
,
G.
,
Zhu
,
X.
, and
Li
,
C.
,
2019
, “
Influence of Different Thermal Cycling Treatments on the Physical, Mechanical and Transport Properties of Granite
,”
Geothermics
,
78
, pp.
118
128
.
6.
Shimada
,
M.
,
1993
, “
Lithosphere Strength Inferred From Fracture Strength of Rocks at High Confining Pressures and Temperatures
,”
Tectonophysics
,
217
(
1–2
), pp.
55
64
.
7.
Yong
,
C.
, and
Wang
,
C. Y.
,
1980
, “
Thermally Induced Acoustic Emission in Westerly Granite
,”
Geophys. Res. Lett.
,
7
(
12
), pp.
1089
1092
.
8.
Lukawski
,
M. Z.
,
Anderson
,
B. J.
,
Augustine
,
C.
,
Capuano
,
L. E.
Jr
,
Beckers
,
K. F.
,
Livesay
,
B.
, and
Tester
,
J. W.
,
2014
, “
Cost Analysis of Oil, Gas, and Geothermal Well Drilling
,”
J. Pet. Sci. Eng.
,
118
, pp.
1
14
.
9.
Xuyue
,
C.
,
Qiqi
,
Y.
,
Naitong
,
Y.
,
Deli
,
G.
,
Yiqi
,
Z.
, and
Pu
,
H.
,
2024
, “
The Bottomhole Stress Field Analysis and the Rate of Penetration Enhancement Mechanism of a New Type of Central-Grooved Single-Cone/Multi-blade Hybrid Bit for Deep Well Drilling
,”
Geoenergy Sci. Eng.
,
233
, p.
212485
.
10.
Xuyue
,
C.
,
Qiqi
,
Y.
,
Jin
,
Y.
,
Deli
,
G.
,
Yiqi
,
Z.
, and
Mingchi
,
Z.
,
2024
, “
The Stress Field Simulation of a Novel M-Type Convex Stepped Bottomhole and the Rate of Penetration Enhancement Mechanism of a New Type of Central-Grooved PDC Bit for Offshore Deep & Ultradeep Well Drilling
,”
Ocean Eng.
,
293
, p.
116706
.
11.
Chen
,
L.-H.
,
2003
,
Failure of Rock Under Normal Wedge Indentation
,
University of Minnesota
,
Minneapolis, MN
.
12.
Le Ravalec
,
M.
,
Darot
,
M.
,
Reuschlé
,
T.
, and
Guéguen
,
Y.
,
1996
, “
Transport Properties and Microstructural Characteristics of a Thermally Cracked Mylonite
,”
Pure Appl. Geophys.
,
146
(
2
), pp.
207
227
.
13.
Han
,
C.
,
Shi
,
H.
,
Zang
,
Y.
,
Chen
,
Z.
,
He
,
W.
,
Li
,
X.
,
Shi
,
M.
,
Qu
,
Z.
, and
Xiong
,
C.
,
2024
, “
Investigation on Rock-Breaking Characteristics of Hard Sandstone by Non-Planar PDC Cutters Under High Confining Pressure
,”
Geoenergy Sci. Eng.
,
243
, p.
213268
.
14.
Marshall
,
D. B.
,
1984
, “
Geometrical Effects in Elastic/Plastic Indentation
,”
J. Am. Ceram. Soc.
,
67
(
1
), pp.
57
60
.
15.
Johnson
,
K. L.
, and
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
16.
Lawn
,
B. R.
,
1967
, “
Partial Cone Crack Formation in a Brittle Material Loaded With a Sliding Spherical Indenter
,”
Proc. R. Soc. London, A
,
299
(
1458
), pp.
307
316
.
17.
García
,
A.
,
Barocio
,
H.
,
Nicholl
,
D.
,
Belhenniche
,
S. A.
,
Quijada
,
R.
,
Veloz
,
C.
, and
Cevallos
,
M.
,
2013
, “
Novel Drill Bit Materials Technology Fusion Delivers Performance Step Change in Hard and Difficult Formations
,”
SPE/IADC Drilling Conference and Exhibition, SPE
, p.
SPE-163458-MS
.
18.
Xie
,
D.
,
Huang
,
Z.
,
Yan
,
Y.
,
Ma
,
Y.
, and
Yuan
,
Y.
,
2020
, “
Application of an Innovative Ridge-Ladder-Shaped Polycrystalline Diamond Compact Cutter to Reduce Vibration and Improve Drilling Speed
,”
Sci. Prog.
,
103
(
3
), p.
0036850420930971
.
19.
Wu
,
Z.
,
Yuan
,
R.
,
Zhang
,
W.
,
Liu
,
J.
, and
Hu
,
S.
,
2024
, “
Structure Design of Bionic PDC Cutter and the Characteristics of Rock Breaking Processes
,”
Processes
,
12
(
1
), p.
66
.
20.
Zhou
,
Y.
, and
Lin
,
J.-S.
,
2013
, “
On the Critical Failure Mode Transition Depth for Rock Cutting
,”
Int. J. Rock Mech. Min. Sci.
,
62
, pp.
131
137
.
21.
Cheng
,
Z.
,
Li
,
G.
,
Huang
,
Z.
,
Sheng
,
M.
,
Wu
,
X.
, and
Yang
,
J.
,
2019
, “
Analytical Modelling of Rock Cutting Force and Failure Surface in Linear Cutting Test by Single PDC Cutter
,”
J. Pet. Sci. Eng.
,
177
, pp.
306
316
.
22.
Ju
,
P.
,
Tian
,
D.
,
Wang
,
C.
, and
Tian
,
H.
,
2021
, “
Theoretical and Simulation Analysis on Rock Breaking Mechanical Properties of Arc-Shaped PDC Bit
,”
Energy Rep.
,
7
, pp.
6690
6699
.
23.
Resende
,
L.
, and
Martin
,
J. B.
,
1985
, “
Formulation of Drucker–Prager Cap Model
,”
J. Eng. Mech.
,
111
(
7
), pp.
855
881
.
24.
Alejano
,
L. R.
, and
Bobet
,
A.
,
2012
, “
Drucker–Prager Criterion
,”
Rock Mech. Rock Eng.
,
45
(
6
), pp.
995
999
.
25.
Yu
,
T.
,
Teng
,
J.
,
Wong
,
Y.
, and
Dong
,
S.
,
2010
, “
Finite Element Modeling of Confined Concrete-I: Drucker–Prager Type Plasticity Model
,”
Eng. Struct.
,
32
(
3
), pp.
665
679
.
26.
Osmundsen
,
P.
,
Roll
,
K. H.
, and
Tveteras
,
R.
,
2012
, “
Drilling Speed—The Relevance of Experience
,”
Energy Econ.
,
34
(
3
), pp.
786
794
.
27.
Yongsheng
,
M.
,
2023
, “
Deep Geothermal Resources in China: Potential, Distribution, Exploitation, and Utilization
,”
Energy Geosci.
,
4
(
4
), p.
100209
.
You do not currently have access to this content.