Abstract

In this article, a daily programming was performed for an energy hub (EH). This EH has a typical electricity generation unit, a boiler, a combined heat and power (CHP), two hectares of solar farm, three wind turbines with different capacities, a battery, and a heat storage unit. This hub can obtain electricity from the upstream grid and is also responsible for fully supplying the electrical and thermal loads. Herein, power generation uncertainty by renewable energy sources (RESs), the consumer’s electrical and thermal demands, as well as the upstream grid electricity market price are modeled by appropriate probability functions. In addition, the combined thermal and electrical energies to consumer are optimized. Moreover, the effect of uncertainty of uncertain parameters is reduced using a demand response program (DRP) by the load shifting method. The DRP is applied to both energy forms (electrical and thermal), which reduces hub costs by shifting the load from the hours when energy is expensive and unavailable to the hours when energy is cheap and available. Energy storage devices also shift energy from expensive to cheap hours. The integration of a demand response program effectively minimizes operational costs and enhances the efficiency of the energy hub by optimizing energy usage in response to fluctuating prices and availability.

References

1.
Geidl
,
M.
,
Koeppel
,
G.
,
Favre-Perrod
,
P.
,
Klockl
,
B.
,
Andersson
,
G.
, and
Frohlich
,
K.
,
2006
, “
Energy Hubs for the Future
,”
IEEE Power Energy Mag.
,
5
(
1
), pp.
24
30
.
2.
Ahmadpour
,
A.
,
Mokaramian
,
E.
, and
Anderson
,
S.
,
2021
, “
The Effects of the Renewable Energies Penetration on the Surplus Welfare Under Energy Policy
,”
Renew. Energy
,
164
, pp.
1171
1182
.
3.
Chen
,
Y.
,
Nan
,
L.
,
He
,
C.
, and
Wang
,
Y.
,
2022
, “
Transmission Interconnections Identification for Electricity System Considering Impacts of Natural Gas Systems
,”
IEEE Trans. Smart Grid.
,
14
(
3
), pp.
1920
1932
.
4.
Choeum
,
D.
, and
Choi
,
D.
,
2021
, “
Trilevel Smart Meter Hardening Strategy for Mitigating Cyber Attacks Against Volt/var Optimization in Smart Power Distribution Systems
,”
Appl. Energy
,
304
, p.
117710
.
5.
Ahmadpour
,
A.
, and
Farkoush
,
S.
,
2020
, “
Gaussian Models for Probabilistic and Deterministic Wind Power Prediction: Wind Farm and Regional
,”
Int. J. Hydrogen Energy
,
45
(
51
), pp.
27779
27791
.
6.
Kiptoo
,
M.
,
Lotfy
,
M.
,
Adewuyi
,
O.
,
Conteh
,
A.
,
Howlader
,
A.
, and
Senjyu
,
T.
,
2020
, “
Integrated Approach for Optimal Techno-Economic Planning for High Renewable Energy-Based Isolated Microgrid Considering Cost of Energy Storage and Demand Response Strategies
,”
Energy Convers. Manage.
,
215
, p.
112917
.
7.
Zhang
,
Y.
,
He
,
Y.
,
Yan
,
M.
,
Guo
,
C.
, and
Ding
,
Y.
,
2018
, “
Linearized Stochastic Scheduling of Interconnected Energy Hubs Considering Integrated Demand Response and Wind Uncertainty
,”
Energies
,
11
(
9
), p.
2448
.
8.
Pandey
,
V.
,
Gupta
,
N.
,
Niazi
,
K.
, and
Swarnkar
,
A.
,
2019
, “
A Scenario-Based Stochastic Dynamic Economic Load Dispatch Considering Wind Uncertainty
,”
2019 8th International Conference on Power Systems (ICPS)
Jaipur, India, Dec. 20–22, pp.
1
5
.
9.
Hu
,
J.
, and
Cao
,
J.
,
2021
, “
Demand Response Optimal Dispatch and Control of TCL and PEV Agents With Renewable Energies
,”
Fractal Fract.
,
5
(
4
), p.
140
.
10.
Heidari
,
A.
,
Mortazavi
,
S.
, and
Bansal
,
R.
,
2020
, “
Stochastic Effects of Ice Storage on Improvement of an Energy Hub Optimal Operation Including Demand Response and Renewable Energies
,”
Appl. Energy
,
261
, p.
114393
.
11.
Jiang
,
W.
,
Wang
,
X.
,
Huang
,
H.
,
Zhang
,
D.
, and
Ghadimi
,
N.
,
2022
, “
Optimal Economic Scheduling of Microgrids Considering Renewable Energy Sources Based on Energy Hub Model Using Demand Response and Improved Water Wave Optimization Algorithm
,”
J. Energy Storage
,
55
, p.
105311
.
12.
Salkuti
,
S.
,
2019
, “
Day-Ahead Thermal and Renewable Power Generation Scheduling Considering Uncertainty
,”
Renew. Energy
,
131
, pp.
956
965
.
13.
Hemmati
,
S.
,
Ghaderi
,
S.
, and
Ghazizadeh
,
M.
,
2018
, “
Sustainable Energy Hub Design Under Uncertainty Using Benders Decomposition Method
,”
Energy
,
143
, pp.
1029
1047
.
14.
Odetayo
,
B.
,
Kazemi
,
M.
,
MacCormack
,
J.
,
Rosehart
,
W.
,
Zareipour
,
H.
, and
Seifi
,
A.
,
2018
, “
A Chance Constrained Programming Approach to the Integrated Planning of Electric Power Generation, Natural Gas Network and Storage
,”
IEEE Trans. Power Syst.
,
33
(
6
), pp.
6883
6893
.
15.
Liang
,
J.
, and
Tang
,
W.
,
2020
, “
Interval Based Transmission Contingency-Constrained Unit Commitment for Integrated Energy Systems With High Renewable Penetration
,”
Int. J. Elec. Power Energy Syst.
,
119
, p.
105853
.
16.
Sun
,
G.
,
Chen
,
S.
,
Wei
,
Z.
,
Cheung
,
K.
, and
Zang
,
H.
,
2019
, “
Corrective Security-Constrained Optimal Power and Gas Flow With Binding Contingency Identification
,”
IEEE Trans. Sustain. Energ.
,
11
(
2
), pp.
1033
1042
.
17.
Wen
,
Y.
,
Qu
,
X.
,
Li
,
W.
,
Liu
,
X.
, and
Ye
,
X.
,
2017
, “
Synergistic Operation of Electricity and Natural Gas Networks Via ADMM
,”
IEEE Trans. Smart Grid
,
9
(
5
), pp.
4555
4565
.
18.
He
,
Y.
,
Yan
,
M.
,
Shahidehpour
,
M.
,
Li
,
Z.
,
Guo
,
C.
,
Wu
,
L.
, and
Ding
,
Y.
,
2017
, “
Decentralized Optimization of Multi-Area Electricity-Natural Gas Flows Based on Cone Reformulation
,”
IEEE Trans. Power Syst.
,
33
(
4
), pp.
4531
4542
.
19.
Mokaramian
,
E.
,
Shayeghi
,
H.
,
Sedaghati
,
F.
,
Safari
,
A.
, and
Alhelou
,
H.
,
2022
, “
An Optimal Energy Hub Management Integrated EVs and RES Based on Three-Stage Model Considering Various Uncertainties
,”
IEEE Access
,
10
, pp.
17349
17365
.
20.
Klatzer
,
T.
,
Bachhiesl
,
U.
, and
Wogrin
,
S.
,
2022
, “
State-of-the-Art Expansion Planning of Integrated Power, Natural Gas, and Hydrogen Systems
,”
Int. J. Hydrogen Energy.
,
47
, pp.
20585
20603
.
21.
Navarro
,
R.
,
Rojas
,
H.
,
De Oliveira
,
I.
,
Luyo
,
J.
, and
Molina
,
Y.
,
2022
, “
Optimization Model for the Integration of the Electric System and Gas Network: Peruvian Case
,”
Energies
,
15
(
10
), p.
3847
.
22.
Yuan
,
H.
,
Feng
,
K.
,
Li
,
W.
, and
Sun
,
X.
,
2022
, “
Multi-objective Optimization of Virtual Energy Hub Plant Integrated With Data Center and Plug-in Electric Vehicles Under a Mixed Robust-Stochastic Model
,”
J. Cleaner Prod.
,
36
(
34
), p.
132365
.
23.
Kanellos
,
F.
,
Kalaitzakis
,
K.
,
Psarras
,
I.
, and
Katsigiannis
,
Y.
,
2022
, “
Efficient and Robust Power and Energy Management for Large Clusters of Plug-In Electric Vehicles and Distribution Networks
,”
IET Energy Syst. Integr.
,
4
(
3
), pp.
393
408
.
24.
Peng
,
C.
,
Xiong
,
Z.
,
Zhang
,
Y.
, and
Zheng
,
C.
,
2022
, “
Multi-objective Robust Optimization Allocation for Energy Storage Using a Novel Confidence Gap Decision Method
,”
Int. J. Electr. Power Energy Syst.
,
138
, p.
107902
.
25.
Davoodi
,
A.
,
Abbasi
,
A.
, and
Nejatian
,
S.
,
2022
, “
Multi-objective Techno-Economic Generation Expansion Planning to Increase the Penetration of Distributed Generation Resources Based on Demand Response Algorithms
,”
Int. J. Electr. Power Energy Syst.
,
138
, p.
107923
.
26.
Ma
,
S.
,
Zhou
,
D.
,
Zhang
,
H.
,
Weng
,
S.
, and
Shao
,
T.
,
2019
, “
Modeling and Operational Optimization Based on Energy Hubs for Complex Energy Networks With Distributed Energy Resources
,”
J. Energy Res. Technol.
,
141
(
2
), p.
022002
.
27.
Żymełka
,
P.
,
Szega
,
M.
, and
Madejski
,
P.
,
2020
, “
Techno-Economic Optimization of Electricity and Heat Production in a Gas-Fired Combined Heat and Power Plant With a Heat Accumulator
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022101
.
28.
Sainthiya
,
H.
, and
Beniwal
,
N. S.
,
2020
, “
Thermal Modeling and Performance Analysis of a Hybrid Photovoltaic/Thermal System Under Combined Surface Water Cooling in Winter Season: An Experimental Approach
,”
J. Energy Res. Technol.
,
142
(
1
), p.
012102
.
29.
López Vega
,
A.
,
Rubio-Maya
,
C.
,
Kowalski
,
G. J.
, and
Pacheco Ibarra
,
J. J.
,
2020
, “
Analysis of the Design and Operation of a Hybrid Trigeneration-Photovoltaic System Installed in a Shopping Mall
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012101
.
30.
Cardona
,
E.
, and
Piacentino
,
A.
,
2004
, “
A Validation Methodology for a Combined Heating Cooling and Power (CHCP) Pilot Plant
,”
J. Energy Res. Technol.
,
126
(
4
), pp.
285
292
.
31.
Ippolito
,
F.
, and
Venturini
,
M.
,
2019
, “
Micro Combined Heat and Power System Transient Operation in a Residential User Microgrid
,”
J. Energy Res. Technol.
,
141
(
4
), p.
042006
.
32.
Cohen
,
S. M.
,
Rochelle
,
G. T.
, and
Webber
,
M. E.
,
2010
, “
Turning CO2 Capture on and Off in Response to Electric Grid Demand: A Baseline Analysis of Emissions and Economics
,”
ASME J. Energy Resour. Technol.
,
132
(
5
), p.
021003
.
33.
Ho
,
C. K.
,
Roesler
,
E. L.
,
Nguyen
,
T.
, and
Ellison
,
J.
,
2023
, “
Potential Impacts of Climate Change on Renewable Energy and Storage Requirements for Grid Reliability and Resource Adequacy
,”
ASME J. Energy Resour. Technol.
,
145
(
10
), p.
100904
.
34.
Hai
,
T.
,
Zhou
,
J.
,
Zain
,
J. M.
, and
Vafa
,
S.
,
2023
, “
Cost Optimization and Energy Management of a Microgrid Including Renewable Energy Resources and Electric Vehicles
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
042101
.
35.
Qandil
,
M. D.
,
Abbas
,
A. I.
,
Al Hamad
,
S.
,
Saadeh
,
W.
, and
Amano
,
R. S.
,
2022
, “
Performance of Hybrid Renewable Energy Power System for a Residential Building
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
041301
.
36.
Wang
,
S.
,
Bi
,
S.
,
Zhang
,
Y.
, and
Huang
,
J.
,
2018
, “
Electrical Vehicle Charging Station Profit Maximization: Admission, Pricing, and Online Scheduling
,”
IEEE Trans. Sustain. Energ.
,
9
(
4
), pp.
1722
1731
.
37.
Adetunji
,
K.
,
Hofsajer
,
I.
,
Abu-Mahfouz
,
A.
, and
Cheng
,
L.
,
2022
, “
An Optimization Planning Framework for Allocating Multiple Distributed Energy Resources and Electric Vehicle Charging Stations in Distribution Networks
,”
Appl. Energy
,
322
, p.
119513
.
38.
Li
,
Y.
,
Han
,
M.
,
Yang
,
Z.
, and
Li
,
G.
,
2021
, “
Coordinating Flexible Demand Response and Renewable Uncertainties for Scheduling of Community Integrated Energy Systems With an Electric Vehicle Charging Station: A Bi-Level Approach
,”
IEEE Trans. Sustain. Energ.
,
12
(
4
), pp.
2321
2331
.
39.
Mokaramian
,
E.
,
Shayeghi
,
H.
,
Sedaghati
,
F.
,
Safari
,
A.
, and
Alhelou
,
H.
,
2021
, “
A CVaR-Robust-Based Multi-objective Optimization Model for Energy Hub Considering Uncertainty and E-fuel Energy Storage in Energy and Reserve Markets
,”
IEEE Access
,
9
, p.
109447
.
40.
Abdella
,
J.
, and
Shuaib
,
K.
,
2018
, “
Peer to Peer Distributed Energy Trading in Smart Grids: A Survey
,”
Energies
,
11
(
6
), p.
1560
.
41.
Zeng
,
B.
,
Zhu
,
Z.
,
Xu
,
H.
, and
Dong
,
H.
,
2020
, “
Optimal Public Parking Lot Allocation and Management for Efficient PEV Accommodation in Distribution Systems
,”
IEEE Trans. Ind. Appl.
,
56
(
5
), pp.
5984
5994
.
42.
Neyestani
,
N.
,
Damavandi
,
M.
,
Shafie-Khah
,
M.
,
Bakirtzis
,
A.
, and
Catalão
,
J.
,
2016
, “
Plug-In Electric Vehicles Parking Lot Equilibria With Energy and Reserve Markets
,”
IEEE Trans. Power Syst.
,
32
(
3
), pp.
2001
2016
.
43.
Yang
,
H.
,
Zhang
,
S.
,
Qiu
,
J.
,
Qiu
,
D.
,
Lai
,
M.
, and
Dong
,
Z.
,
2017
, “
CVaR-Constrained Optimal Bidding of Electric Vehicle Aggregators in Day-Ahead and Real-Time Markets
,”
IEEE Trans. Ind. Inform.
,
13
(
5
), pp.
2555
2565
.
44.
Gu
,
W.
,
Lu
,
S.
,
Wu
,
Z.
,
Zhang
,
X.
,
Zhou
,
J.
,
Zhao
,
B.
, and
Wang
,
J.
,
2017
, “
Residential Cchp Microgrid With Load Aggregator: Operation Mode, Pricing Strategy, and Optimal Dispatch
,”
Appl. Energy
,
205
, pp.
173
186
.
45.
Tiwari
,
S.
, and
Singh
,
J.
,
2022
, “
Optimal Energy Management of Multi-carrier Networked Energy Hubs Considering Efficient Integration of Demand Response and Electrical Vehicles: A Cooperative Energy Management Framework
,”
J. Energy Storage
,
51
, p.
104479
.
46.
Zhou
,
X.
,
Sang
,
M.
,
Bao
,
M.
,
Wang
,
S.
,
Cui
,
W.
,
Ye
,
C.
, and
Ding
,
Y.
,
2022
, “
Exploiting Integrated Demand Response for Operating Reserve Provision Considering Rebound Effects
,”
IEEE Access
,
10
, pp.
15151
15162
.
47.
Kim
,
H.
, and
Kim
,
M.
,
2021
, “
Risk-based Hybrid Energy Management With Developing Bidding Strategy and Advanced Demand Response of Grid-Connected Microgrid Based on Stochastic/information Gap Decision Theory
,”
Int. J. Electr. Power Energy Syst.
,
131
, p.
107046
.
48.
Harsh
,
P.
, and
Das
,
D.
,
2021
, “
Energy Management in Microgrid Using Incentive-Based Demand Response and Reconfigured Network Considering Uncertainties in Renewable Energy Sources
,”
Sustain. Energy Technol. Assessments
,
46
, p.
101225
.
49.
Zhou
,
X.
,
Ma
,
Y.
,
Wang
,
H.
,
Li
,
Y.
,
Yu
,
J.
, and
Yang
,
J.
,
2022
, “
Optimal Scheduling of Integrated Energy System for Low Carbon Considering Combined Weights
,”
Energy Rep.
,
8
, pp.
527
535
.
50.
Chen
,
H.
,
Zhang
,
Y.
,
Zhang
,
R.
,
Lin
,
C.
,
Jiang
,
T.
, and
Li
,
X.
,
2021
, “
Privacy-Preserving Distributed Optimal Scheduling of Regional Integrated Energy System Considering Different Heating Modes of Buildings
,”
Energy Convers. Manage.
,
237
, p.
114096
.
51.
Wang
,
Y.
,
Wang
,
Y.
,
Huang
,
Y.
,
Yang
,
J.
,
Ma
,
Y.
,
Yu
,
H.
,
Zeng
,
M.
,
Zhang
,
F.
, and
Zhang
,
Y.
,
2019
, “
Operation Optimization of Regional Integrated Energy System Based on the Modeling of Electricity-Thermal-Natural Gas Network
,”
Appl. Energy
,
251
, p.
113410
.
52.
Davatgaran
,
V.
,
Saniei
,
M.
, and
Mortazavi
,
S.
,
2018
, “
Optimal Bidding Strategy for an Energy Hub in Energy Market
,”
Energy
,
148
, pp.
482
493
.
53.
Lu
,
X.
,
Liu
,
Z.
,
Ma
,
L.
,
Wang
,
L.
,
Zhou
,
K.
, and
Feng
,
N.
,
2020
, “
A Robust Optimization Approach for Optimal Load Dispatch of Community Energy Hub
,”
Appl. Energy
,
259
, p.
114195
.
54.
Jalili
,
M.
,
Sedighizadeh
,
M.
, and
Fini
,
A.
,
2021
, “
Stochastic Optimal Operation of a Microgrid Based on Energy Hub Including a Solar-Powered Compressed Air Energy Storage System and an Ice Storage Conditioner
,”
J. Energy Storage
,
33
, p.
102089
.
55.
Shams
,
M.
,
Shahabi
,
M.
,
MansourLakouraj
,
M.
,
Shafie-khah
,
M.
, and
Catalão
,
J.
,
2021
, “
Adjustable Robust Optimization Approach for Two-Stage Operation of Energy Hub-Based Microgrids
,”
Energy
,
222
, p.
119894
.
56.
Wu
,
D.
,
Bai
,
J.
,
Wei
,
W.
,
Chen
,
L.
, and
Mei
,
S.
,
2021
, “
Optimal Bidding and Scheduling of AA-CAES Based Energy Hub Considering Cascaded Consumption of Heat
,”
Energy
,
233
, p.
121133
.
57.
Mokaramian
,
E.
,
Shayeghi
,
H.
,
Sedaghati
,
F.
, and
Safari
,
A.
,
2021
, “
Four-Objective Optimal Scheduling of Energy Hub Using a Novel Energy Storage, Considering Reliability and Risk Indices
,”
J. Energy Storage
,
40
, p.
102731
.
58.
Roustai
,
M.
,
Rayati
,
M.
,
Sheikhi
,
A.
, and
Ranjbar
,
A.
,
2018
, “
A Scenario-Based Optimization of Smart Energy Hub Operation in a Stochastic Environment Using Conditional-Value-at-Risk
,”
Sustain. Cities Soc.
,
39
, pp.
309
316
.
59.
Jasinski
,
M.
,
Najafi
,
A.
,
Homaee
,
O.
,
Kermani
,
M.
,
Tsaousoglou
,
G.
,
Leonowicz
,
Z.
, and
Novak
,
T.
,
2023
, “
Operation and Planning of Energy Hubs Under Uncertainty—A Review of Mathematical Optimization Approaches
,”
IEEE Access
,
11
(
1
), pp.
7208
7228
.
60.
Ding
,
T.
,
Jia
,
W.
,
Shahidehpour
,
M.
,
Han
,
O.
,
Sun
,
Y.
, and
Zhang
,
Z.
,
2022
, “
Review of Optimization Methods for Energy Hub Planning, Operation, Trading, and Control
,”
IEEE Trans. Sustain. Energ.
,
13
(
3
), pp.
1802
1818
.
61.
Jasim
,
A.
,
Jasim
,
B.
,
Kraiem
,
H.
, and
Flah
,
A.
,
2022
, “
A Multi-objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System
,”
Sustainability
,
14
(
16
), p.
10158
.
62.
Rezaei
,
N.
,
Pezhmani
,
Y.
, and
Khazali
,
A.
,
2022
, “
Economic-Environmental Risk-Averse Optimal Heat and Power Energy Management of a Grid-Connected Multi Microgrid System Considering Demand Response and Bidding Strategy
,”
Energy
,
240
, p.
122844
.
63.
Fares
,
D.
,
Fathi
,
M.
, and
Mekhilef
,
S.
,
2022
, “
Performance Evaluation of Metaheuristic Techniques for Optimal Sizing of a Stand-Alone Hybrid PV/Wind/Battery System
,”
Appl. Energy
,
305
, p.
117823
.
64.
Ahmed
,
E.
,
Rakočević
,
S.
,
Ćalasan
,
M.
,
Ali
,
Z.
,
Hasanien
,
H.
,
Turky
,
R.
, and
Aleem
,
S.
,
2022
, “
Bonmin Solver-Based Coordination of Distributed Facts Compensators and Distributed Generation Units in Modern Distribution Networks
,”
Ain Shams Eng. J.
,
13
(
4
), p.
101664
.
65.
Suraya
,
S.
,
Irshad
,
S.
,
Ramesh
,
G.
, and
Sujatha
,
P.
,
2022
, “
Biogeography Based Optimization Algorithm and Neural Network to Optimize Place and Size of Distributed Generating System in Electrical Distribution
,”
J. Electr. Eng. Technol.
,
17
(
3
), pp.
1593
1603
.
66.
Ebrahimian
,
H.
,
Babazadeh
,
V.
, and
Javanshir
,
S.
,
2015
, “
Combination of PSS and LFC for Improving the Power System Stability in Deregulated Environment Using HBMO
,”
J. Curr. Res. Sci.
,
3
(
5
), p.
128
.
67.
Ebrahimian
,
H.
,
Manafi
,
H.
,
Babazadeh
,
V.
, and
Salavati
,
M.
,
2015
, “
Multi-stage Fuzzy PID Load Frequency Control by Modified Shuffled Frog Leaping
,”
GMP Rev.
,
18
, pp.
255
260
.
You do not currently have access to this content.