Abstract

Hydrogen plays a crucial role in the energy sector toward sustainability and is essential for decarbonizing various sectors of national and international economics. Water electrolysis powered by renewable sources is an environmentally friendly way to produce hydrogen. However, there is room for improvement in the components’ design, dimensions, materials, and electrolysis system. This article focuses on model-based simultaneous optimization of geometric dimensions and operating conditions, such as cell temperature, electrolyte concentration, applied electrolyte pressure, and current density, in an alkaline water electrolysis process. A nonlinear mathematical programming optimization model has been developed. After successful validation against experimental results from the literature, the model was employed for optimization purposes using a gradient-based deterministic optimization approach. The study identifies the operating conditions and geometric dimensions that lead to maximizing cell efficiency and explores the impact of critical operating variables on the optimal solution. The model is implemented in gams software and solved using CONOPT.

References

1.
Martin
,
A.
,
Agnoletti
,
M.
, and
Brangier
,
E.
,
2020
, “
Users in the Design of Hydrogen Energy Systems: A Systematic Review
,”
Int. J. Hydrogen Energy
,
45
(
21
), pp.
11889
11900
.
2.
Kar
,
S. K.
,
Harichandan
,
S.
, and
Roy
,
B.
,
2022
, “
Bibliometric Analysis of the Research on Hydrogen Economy: An Analysis of Current Findings and Roadmap Ahead
,”
Int. J. Hydrogen Energy
,
47
(
20
), pp.
10803
10824
.
3.
Olaniyi
,
O.
,
Incer-Valverde
,
J.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2023
, “
Exergetic and Economic Evaluation of Natural Gas/Hydrogen Blends for Power Generation
,”
ASME J. Energy Resour. Technol.
,
145
(
6
), p.
062701
.
4.
IEA (International Energy Agency)
,
2021
, “Global Hydrogen Review 2021,” https://www.iea.org/reports/global-hydrogen-review-2021
5.
Tetteh
,
D. A.
, and
Salehi
,
S.
,
2022
, “
The Blue Hydrogen Economy: A Promising Option for the Near-to-Mid-term Energy Transition
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
042701
.
6.
Incer-Valverde
,
J.
,
Korayem
,
A.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2023
, “
‘Colors’ of Hydrogen: Definitions and Carbon Intensity
,”
Energy Convers. Manage.
,
291
, p.
117294
.
7.
Sánchez
,
M.
,
Amores
,
E.
,
Abad
,
D.
,
Rodríguez
,
L.
, and
Clemente-Jul
,
C.
,
2020
, “
Aspen Plus Model of an Alkaline Electrolysis System for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
3916
3929
.
8.
Jang
,
D.
,
Cho
,
H.-S.
, and
Kang
,
S.
,
2021
, “
Numerical Modeling and Analysis of the Effect of Pressure on the Performance of an Alkaline Water Electrolysis System
,”
Appl. Energy
,
287
, p.
116554
.
9.
Vogt
,
H.
,
1984
, “
The Rate of Gas Evolution of Electrodes-I. An Estimate of the Efficiency of Gas Evolution From the Supersaturation of Electrolyte Adjacent to a Gas-Evolving Electrode
,”
Electrochim. Acta
,
29
(
2
), pp.
167
173
.
10.
Vogt
,
H.
,
1990
, “
The Concentration Overpotential of Gas Evolving Electrodes as a Multiple Problem of Mass Transfer
,”
J. Electrochem. Soc.
,
137
(
4
), pp.
1179
1184
.
11.
Ulleberg
,
Ø.
,
2003
, “
Modeling of Advanced Alkaline Electrolyzers: A System Simulation Approach
,”
Int. J. Hydrogen Energy
,
28
(
1
), pp.
21
33
.
12.
Meurer
,
C.
,
Barthels
,
H.
,
Brocke
,
W. A.
,
Emonts
,
B.
, and
Groehn
,
H. G.
,
1999
, “
PHOEBUS—An Autonomous Supply System With Renewable Energy: Six Years of Operational Experience and Advanced Concepts
,”
Sol. Energy
,
67
(
1–3
), pp.
131
138
.
13.
Zeng
,
K.
, and
Zhang
,
D.
,
2010
, “
Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications
,”
Prog. Energy Combust. Sci.
,
36
(
3
), pp.
307
326
.
14.
Haug
,
P.
,
Koj
,
M.
, and
Turek
,
T.
,
2017
, “
Influence of Process Conditions on Gas Purity in Alkaline Water Electrolysis
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
9406
9418
.
15.
Haug
,
P.
,
Kreitz
,
B.
,
Koj
,
M.
, and
Turek
,
T.
,
2017
, “
Process Modelling of an Alkaline Water Electrolyzer
,”
Int. J. Hydrogen Energy
,
42
(
24
), pp.
15689
15707
.
16.
Abdin
,
Z.
,
Webb
,
C. J.
, and
Gray
,
E. M.
,
2017
, “
Modelling and Simulation of an Alkaline Electrolyser Cell
,”
Energy
,
138
, pp.
316
331
.
17.
Jang
,
D.
,
Choi
,
W.
,
Cho
,
H.
,
Cho
,
W. C.
,
Kim
,
C. H.
, and
Kang
,
S.
,
2021
, “
Numerical Modeling and Analysis of the Temperature Effect on the Performance of an Alkaline Water Electrolysis System
,”
J. Power Sources
,
506
, p.
230106
.
18.
Varela
,
C.
,
Mostafa
,
M.
, and
Zondervan
,
E.
,
2021
, “
Modeling Alkaline Water Electrolysis for Power-to-x Applications: A Scheduling Approach
,”
Int. J. Hydrogen Energy
,
46
(
14
), pp.
9303
9313
.
19.
Himmelblau
,
D. M.
,
1960
, “
Solubilities of Inert Gases in Water O°C to Near the Critical Point of Water
,”
J. Chem. Eng. Data
,
5
(
1
), pp.
10
15
.
20.
Atkins
,
P. W.
, and
de Paula
,
J.
,
2006
,
Physical Chemistry for the Life Sciences
,
Freeman and Company
,
New York
.
21.
Vogt
,
H.
, and
Balzer
,
R. J.
,
2005
, “
The Bubble Coverage of Gas-Evolving Electrodes in Stagnant Electrolytes
,”
Electrochim. Acta
,
50
(
10
), pp.
2073
2079
.
22.
Feldkamp
,
K.
,
1969
, “
Die Oberflächenspannung Wäßriger NaOH- und KOH-Lösungen
,”
Chem. Ing. Tech.
,
41
(
21
), pp.
1181
1183
.
23.
Peebles
,
F. N.
, and
Garber
,
H.
,
1953
, “
Studies on the Motion of Gas Bubbles in Liquid
,”
Chem. Eng. Prog.
,
49
(
2
), pp.
88
97
.
24.
Hammoudi
,
M.
,
Henao
,
C.
,
Agbossou
,
K.
,
Dubé
,
Y.
, and
Doumbia
,
M. L.
,
2012
, “
New Multi-physics Approach for Modelling and Design of Alkaline Electrolyzers
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
13895
13913
.
25.
Mandin
,
P.
,
Derhoumi
,
Z.
,
Roustan
,
H.
, and
Rolf
,
W.
,
2014
, “
Bubble Over-Potential During Two-Phase Alkaline Water Electrolysis
,”
Electrochim. Acta
,
128
, pp.
248
258
.
26.
Gilliam
,
R. J.
,
Graydon
,
J. W.
,
Kirk
,
D. W.
, and
Thorpe
,
S. J.
,
2007
, “
A Review of Specific Conductivities of Potassium Hydroxide Solutions for Various Concentrations and Temperatures
,”
Int. J. Hydrogen Energy
,
32
(
3
), pp.
359
364
.
27.
Mazloomi
,
S. K.
, and
Sulaiman
,
N.
,
2012
, “
Influencing Factors of Water Electrolysis Electrical Efficiency
,”
Renew. Sustain. Energy Rev.
,
16
(
6
), pp.
4257
4263
.
28.
Phillips
,
R.
,
Edwards
,
A.
,
Rome
,
B.
,
Jones
,
D. R.
, and
Dunnill
,
C. W.
,
2017
, “
Minimising the Ohmic Resistance of an Alkaline Electrolysis Cell Through Effective Cell Design
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
23986
23994
. .
29.
Henao
,
C.
,
Agbossou
,
K.
,
Hammoudi
,
M.
,
Dubé
,
Y.
, and
Cardenas
,
A.
,
2014
, “
Simulation Tool Based on a Physics Model and an Electrical Analogy for an Alkaline Electrolyzer
,”
J. Power Sources
,
250
, pp.
58
67
.
You do not currently have access to this content.