Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The in-depth study of the mutual coupling between the flame and the wall can significantly enhance the efficiency of actual combustion devices. A two-dimensional numerical model was established for the heat transfer characteristics of methane–air-premixed jet flames on flat and hemispherical walls, respectively. An examination of the effects of wall shape on the heat transfer characteristics of methane/air flames was conducted as a function of the equivalence ratio (ϕ = 0.9–1.5), the mixture Reynolds number (Re = 300–800), and the burner-to-plate distance (H/d = 1–6). As the equivalence ratio and Reynolds number increase, the flame temperature increases on the surface near the wall, and the temperature near the flame centerline is higher under the influence of a hemispherical wall than it is under the influence of a plate. In addition, the wall's heat flux increases as both the equivalence ratio and the Reynolds number increase. It is observed that the heat flux of the hemispherical wall is greater than that of the flat plate near the stagnation point, whereas it is smaller at a distance from the stagnation point. Due to the burner-to-plate distance, thermal efficiency is maximized when the flame-premixed cone contacts the impact surface, which is the desired condition for optimal performance. Due to different operating conditions, the efficiency of heat transfer is always higher under the action of a flat plate than under the action of a hemispherical wall.

References

1.
Pielecha
,
I.
,
Szwajca
,
F.
,
Skobiej
,
K.
,
Pielecha
,
J.
,
Merkisz
,
J.
, and
Cieślik
,
W.
,
2024
, “
Analysis on Monofuel: Methane and Hydrogen in Passive TJI Engine Using Center of Combustion and Lambda-Value Control
,”
Int. J. Hydrogen Energy
,
83
, pp.
1170
1183
.
2.
Chen
,
P.
,
Sun
,
R.
,
Li
,
L.
, and
Wang
,
Y.
,
2023
, “
Experimental Observation of Premixed Methane/Air Flame Propagation in an Obstructed Tube With Increasing Blockage Ratios
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022303
.
3.
Nemitallah
,
M. A.
,
Mansir
,
I. B.
,
Haque
,
M. A.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2023
, “
Effects of Adiabatic Flame Temperature on Premixed Combustion Stability and Emission Characteristics of Swirl-Stabilized Oxy-Methane Flames
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022302
.
4.
Liu
,
B.
,
Wang
,
C.
,
Zhang
,
Y.
,
Si
,
M.
, and
Luo
,
G.
,
2024
, “
Effect of CH4 Addition on Soot Formation in C2H4 Diffusion Flame
,”
ASME J. Energy Resour. Technol.
,
146
(
1
), p.
012301
.
5.
Hui-Sheng
,
P.
, and
Tian-Hang
,
Y.
,
2023
, “
Investigating the Effects of H, CH3, and C2H5 Radicals on the Kinetics of Ignition for Methane/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
145
(
10
), p.
102301
.
6.
Dreizler
,
A.
, and
Böhm
,
B.
,
2015
, “
Advanced Laser Diagnostics for An Improved Understanding of Premixed Flame-Wall Interactions
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
37
64
.
7.
Mann
,
M.
,
Jainski
,
C.
,
Euler
,
M.
,
Böhm
,
B.
, and
Dreizler
,
A.
,
2014
, “
Transient Flame-Wall Interactions: Experimental Analysis Using Spectroscopic Temperature and CO Concentration Measurements
,”
Combust. Flame
,
161
(
9
), pp.
2371
2386
.
8.
Akın Kutlar
,
O.
,
Emre Doğan
,
H.
,
Demirci
,
A.
, and
Arslan
,
H.
,
2023
, “
An Investigation of the Impact of Combustion Chamber Geometry on Turbulent Burning Speeds in a Thermodynamic Model
,”
ASME J. Energy Resour. Technol.
,
145
(
6
), p.
062304
.
9.
Chen
,
X.
,
Liu
,
X.
,
Deng
,
C.
, and
Fan
,
C.
,
2022
, “
Numerical Simulation Study on Boiler Combustion Characteristics With Different Volume Fraction of Ventilation Air Methane
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112304
.
10.
Sroka
,
Z. J.
,
2012
, “
Some Aspects of Thermal Load and Operating Indexes After Downsizing for Internal Combustion Engine
,”
J. Therm. Anal. Calorim.
,
110
(
1
), pp.
51
58
.
11.
Schwarz
,
W.
,
Schwub
,
S.
,
Quering
,
K.
,
Wiedmann
,
D.
,
Höppel
,
H. W.
, and
Göken
,
M.
,
2011
, “
Life Prediction of Thermally Highly Loaded Components: Modelling the Damage Process of a Rocket Combustion Chamber Hot Wall
,”
CEAS Space J.
,
1
(
1–4
), pp.
83
97
.
12.
Epstein
,
A. H.
,
2012
, “
Aircraft Engines' Needs From Combustion Science and Engineering
,”
Combust. Flame
,
159
(
5
), pp.
1791
1792
.
13.
Zhao
,
D. X.
,
Hernández Pérez
,
F. E.
,
Guo
,
C. L.
,
Im
,
H. G.
, and
Wang
,
L. P.
,
2022
, “
Near Wall effects on the Premixed Head-on Hydrogen/Air Flame
,”
Combust. Flame
,
224
, p.
112267
.
14.
Häber
,
T.
, and
Suntz
,
R.
,
2018
, “
Effect of Different Wall Materials and Thermal-Barrier Coatings on the Flame-Wall Interaction of Laminar Premixed Methane and Propane Flames
,”
Int. J. Heat Fluid Flow
,
69
, pp.
95
105
.
15.
Luo
,
G.
,
Zhang
,
Y.
,
Liu
,
B.
,
Liu
,
J.
,
Xu
,
B.
, and
Adjei Takyi
,
S.
,
2024
, “
Effect of Adding N2/H2O to Ethylene Laminar Diffusion Flame on Soot Formation
,”
ASME J. Energy Resour. Technol.
, pp.
1
11
.
16.
Kosaka
,
H.
,
Zentgraf
,
F.
,
Scholtissek
,
A.
,
Bischoff
,
L.
,
Häber
,
T.
,
Suntz
,
R.
,
Albert
,
B.
,
Hasse
,
C.
, and
Dreizler
,
A.
,
2018
, “
Wall Heat Fluxes and CO Formation/Oxidation During Laminar and Turbulent Side-Wall Quenching of Methane and DME Flames
,”
Int. J. Heat Fluid Flow
,
70
, pp.
181
192
.
17.
Wang
,
Q.
,
He
,
Y.
,
Qin
,
Z.
,
Liu
,
Z.
, and
Fu
,
Y.
,
2024
, “
Numerical Simulation on Combustion Characteristics of Methane–Air Premixed Flame Impacted by Hydrogen Jet
,”
ASME J. Energy Resour. Technol.
,
146
(
11
), p.
112301
.
18.
Edacheri Veetil
,
J.
,
Kumbhakarna
,
N.
,
Singh
,
S.
,
Velamati
,
R. K.
, and
Kumar
,
S.
,
2022
, “
Effect of Hydrogen Addition on the Dynamics of Premixed C1–C4 Alkane-Air Flames in a Microchannel With a Wall Temperature Gradient
,”
Int. J. Hydrogen Energy
,
47
(
71
), pp.
30660
30670
.
19.
Aktas
,
F.
,
2022
, “
Numerical Investigation of Equivalence Ratio Effects on a Converted Diesel Engine Using Natural Gas
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
092305
.
20.
Chander
,
S.
, and
Ray
,
A.
,
2006
, “
Influence of Burner Geometry on Heat Transfer Characteristics of Methane/Air Flame Impinging on Flat Surface
,”
Exp. Heat Transfer
,
19
(
1
), pp.
15
38
.
21.
Kuntikana
,
P.
, and
Prabhu
,
S. V.
,
2018
, “
Impinging Premixed Methane-Air Flame Jet of Tube Burner: Thermal Performance Analysis for Varied Equivalence Ratios
,”
Heat Mass Transfer
,
55
(
5
), pp.
1301
1315
.
22.
Ahmed
,
U.
,
Chakraborty
,
N.
, and
Klein
,
M.
,
2023
, “
Influence of Flow Configuration and Thermal Wall Boundary Conditions on Turbulence During Premixed Flame-Wall Interaction Within Low Reynolds Number Boundary Layers
,”
Flow Turbul. Combust.
,
111
(
3
), pp.
825
866
.
23.
Ahmed
,
U.
,
Ghai
,
S. K.
, and
Chakraborty
,
N.
,
2024
, “
Relations Between Reynolds Stresses and Their Dissipation Rates During Premixed Flame–Wall Interaction Within Turbulent Boundary Layers
,”
Phys. Fluids
,
36
(
4
), p.
045120
.
24.
Hou
,
S. S.
, and
Ko
,
Y. C.
,
2005
, “
Influence of Oblique Angle and Heating Height on Flame Structure, Temperature Field and Efficiency of An Impinging Laminar Jet Flame
,”
Energy Convers. Manage.
,
46
(
6
), pp.
941
958
.
25.
Wae-hayee
,
M.
,
Yeranee
,
K.
,
Suksuwan
,
W.
, and
Nuntadusit
,
C.
,
2021
, “
Effect of Burner-to-Plate Distance on Heat Transfer Rate in a Domestic Stove Using LPG
,”
Case Stud. Therm. Eng.
,
28
, p.
101418
.
26.
Dong
,
L. L.
,
Cheung
,
C. S.
, and
Leung
,
C. W.
,
2002
, “
Heat Transfer From an Impinging Premixed Butane-Air Slot Flame Jet
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
979
992
.
27.
Dong
,
L. L.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2004
, “
Heat Transfer and Wall Pressure Characteristics of a Twin Premixed Butane/Air Flame Jets
,”
Int. J. Heat Mass Transfer
,
47
(
3
), pp.
489
500
.
28.
Zhen
,
H. S.
,
Miao
,
J.
,
Leung
,
C. W.
,
Cheung
,
C. S.
, and
Huang
,
Z. H.
,
2016
, “
A Study on the Effects of Air Preheat on the Combustion and Heat Transfer Characteristics of Bunsen Flames
,”
Fuel
,
184
, pp.
50
58
.
29.
Zhen
,
H. S.
,
Wang
,
Z. W.
,
Liu
,
X. Y.
,
Wei
,
Z. L.
,
Leung
,
C. W.
, and
Huang
,
Z. H.
,
2021
, “
A Study on Impingement Heat Transfer Characteristics of Partially Premixed Flames on Double-Concentric-Pipe Burner
,”
Fuel
,
284
, p.
119018
.
30.
Chander
,
S.
, and
Ray
,
A.
,
2008
, “
An Experimental and Numerical Study of Stagnation Point Heat Transfer for Methane/Air Laminar Flame Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3595
3607
.
31.
Chander
,
S.
, and
Ray
,
A.
,
2011
, “
Experimental and Numerical Study on the Occurrence of Off-Stagnation Peak in Heat Flux for Laminar Methane/Air Flame Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1179
1186
.
32.
Kim
,
H. Y.
,
Lee
,
H. D.
, and
Han
,
H. S.
,
2017
, “
Investigation of Impingement Surface Geometry Effects on Heat Transfer in a Laminar Confined Impinging Slot Jet
,”
Int. J. Heat Mass Transfer
,
115
, pp.
347
353
.
33.
Yousefi-Asli
,
V.
,
Houshfar
,
E.
,
Beygi-Khosroshahi
,
F.
, and
Ashjaee
,
M.
,
2018
, “
Experimental Investigation on Temperature Field and Heat Transfer Distribution of a Slot Burner Methane/Air Flame Impinging on a Curved Surface
,”
Appl. Therm. Eng.
,
129
, pp.
761
771
.
34.
Costa
,
S. C.
, and
Malico
,
I.
,
2022
, “
Numerical Investigation of the Heat Transfer Characteristics of Propane/Air Flames Impinging on a Cylindrical Surface
,”
Appl. Therm. Eng.
,
206
, p.
118109
.
35.
Mashaei
,
R. P.
,
Gharehghani
,
A.
, and
Hosseinalipour
,
M. S.
,
2020
, “
Hydrothermal, Energy and Emissions Characteristics Assessment of Impinging Flame Jet on an Oval Flat Tube
,”
J. Therm. Anal. Calorim.
,
145
(
6
), pp.
1
15
.
36.
Parida
,
R. K.
,
Kadam
,
A. R.
,
Vasudeva
,
M.
, and
Hindasageri
,
V.
,
2021
, “
Heat Transfer Characterisation of Impinging Flame Jet Over a Wedge
,”
Appl. Therm. Eng.
,
196
, p.
117277
.
37.
Lu
,
T.
, and
Law
,
C.K.
,
2008
, “
A Criterion Based on Computational Singular Perturbation for the Identification of Quasi Steady State Species: A Reduced Mechanism for Methane Oxidation With NO Chemistry
,”
Combust. Flame
,
154
(
4
), pp.
761
774
.
38.
Hua
,
J.P.
,
Pan
,
J.F.
,
Li
,
F.Y.
,
Li
,
Z.J.
, and
Ojo
,
O.A.
,
2023
, “
Heat Transfer Characteristics of Premixed Methane-Air Flame Jet Impinging on a Hemispherical Surface
,”
Fuel
,
343
, p.
127698
.
39.
Kuntikana
,
P.
, and
Prabhu
,
S. V.
,
2016
, “
Heat Transfer Characteristics of Premixed Methane–Air Flame Jet Impinging Obliquely Onto a Flat Surface
,”
Int. J. Heat Mass Transfer
,
101
, pp.
133
146
.
40.
Kuntikana
,
P.
, and
Prabhu
,
S. V.
,
2018
, “
Heat Transfer Investigations on Methane-Air Premixed Flame Jet Exiting From a Circular Nozzle and Impinging Over Semi-Cylindrical Surfaces
,”
Int. J. Therm. Sci.
,
128
, pp.
105
123
.
You do not currently have access to this content.