Abstract

Fracture-pore carbonate reservoirs exhibit strong microscopic heterogeneity and complex seepage characteristics, resulting in suboptimal oil-drive efficiency and development outcomes. Moreover, water channeling is often a serious problem in the development of fractured porous carbonate rocks, and the blockage of degassed bubbles in the throat is one of the reasons that cannot be ignored. In order to reveal the degree of influence of bubbles on waterflood sweep, this paper employs microfluidic technology to design three distinct chips, namely fracture-type, composite-type, and cave-type, to visually illustrate the influence of the gas phase on three-phase flow. A quantification method is established to analyze the variation characteristics of pore diameter utilization ratio in different types of carbonate reservoirs. Compared with water flooding experiments without the gas phase, the recovery factor of water flooding with the presence of the gas phase decreases by 0.6%, 3.4%, and 15.3% for three distinct chips, respectively. In fracture-type reservoirs, the main focus is on sealing the primary fracture seepage channel and mitigating the shielding effect of the gas phase on matrix utilization. For composite-type reservoirs, the primary objective is to seal fractures and eliminate the shielding effect of the gas phase. In cave-type reservoirs, the primary goal is to eliminate the sealing effect caused by the discontinuous gas phase within small pore throats.

References

1.
Sakthivel
,
S.
,
Zhou
,
X.
,
Giannelis
,
E. P.
, and
Kanj
,
M. Y.
,
2021
, “
Carbon Nanodots for Enhanced Oil Recovery in Carbonate Reservoirs
,”
Energy Rep.
,
7
, pp.
8943
8959
.
2.
Rezaee
,
M.
,
Rostami
,
B.
, and
Pourafshary
,
P.
,
2013
, “
Heterogeneity Effect on Non-Wetting Phase Trapping in Strong Water Flooding Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
14
, pp.
185
191
.
3.
Huang
,
C. G.
,
Cui
,
J.
,
Guan
,
X.
,
Chang
,
H.Y.
,
Yang
,
S.
,
Hui
,
Y.Y.
,
Wu
,
L.Y.
, and
Wu
,
L.R.
,
2017
, “
Storage Space Type of the Oligocene Lower Qianchagou Formation in S3-1 Well in Yingxi Area, Qaidam Basin
,”
J. Earth Sci. Environ.
,
39
(
02
), pp.
255
266
.
4.
Wang
,
H.
,
Zhao
,
Z.
,
Gao
,
Z.
,
Ding
,
Y.
, and
Yang
,
D.
,
2022
, “
Experimental and Mechanistic Characterizations of Oil-Based Cement Slurry Flow Behavior Through Fractures in a Carbonate Reservoir
,”
ASME J. Energy Resour. Technol.
,
144
(
12
), p.
123014
.
5.
Aguilera
,
R.
, and
Ragland
,
D. A.
,
2003
, “
Discussion of: Trends in Cementation Exponents (m) for Carbonate Pore Systems. Author’s Reply
,”
Petrophysics
,
44
(
5
), pp.
301
305
.
6.
Li
,
G.
,
Ren
,
W.
,
Meng
,
Y.
,
Wang
,
C.
, and
Wei
,
N.
,
2014
, “
Micro-Flow Utilizations Research on Water Invasion in Tight Sandstone Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
20
, pp.
184
191
.
7.
Huang
,
S.
,
Zhao
,
Y.
,
Zhang
,
M.
,
Zhou
,
H.
,
Zhu
,
L.
, and
Zhang
,
T.
,
2023
, “
Water Invasion Into Multi-Layer and Multi-Pressure Carbonate Reservoir: A Pore-Scale Simulation
,”
ASME J. Energy Resour. Technol.
,
145
(
8
), p.
083501
.
8.
Hong
,
H. T.
,
Yang
,
Y.
,
Liu
,
X.
,
Chen
,
W.
,
Xia
,
M.L.
,
Zhang
,
J.
, and
Wang
,
S.Y.
,
2012
, “
Characteristics and Control Factors of Marine Carbonate Reservoirs in the Sichuan Basin
,”
J. Pet.
,
33
(
Suppl. 2
), pp.
64
73
.
9.
Chen
,
S.
,
Wang
,
Y.
,
Guo
,
J.
,
He
,
Q.
, and
Yin
,
X.
,
2021
, “
Multi-Scale Evaluation of Fractured Carbonate Reservoir and Its Implication to Sweet-Spot Optimization: A Case Study of Tazhong Oilfield, Central Tarim Basin, China
,”
Energy Rep.
,
7
, pp.
2976
2988
.
10.
Liu
,
W. X.
,
2020
, “
Study on Theoretical Methods and Parameter Bounds for the Evaluation of Artificial Gas Top Formation
,”
Pet. Drill. Prod. Technol.
,
42
(
02
), pp.
207
213
.
11.
Liu
,
H.
,
2022
, “
Experimental Study on the Fracture Closure Law of Fault-Controlled Reservoir
,”
Energy Rep.
,
8
, pp.
14428
14441
.
12.
Li
,
Y.
,
Yang
,
Y.
,
Dong
,
M.
,
Liu
,
C.
,
Iglauer
,
S.
,
Kang
,
L.
,
Yao
,
J.
,
Zhang
,
K.
,
Sun
,
H.
, and
Zhang
,
L.
,
2022
, “
Effect of Pore Structure and Capillary Number on Gas–Water Flow Patterns in Carbonate Rocks
,”
SPE J.
,
27
(
4
), pp.
1895
1904
.
13.
Wang
,
L.
,
Yang
,
S.
,
Peng
,
X.
,
Deng
,
H.
,
Meng
,
Z
,
Qian
,
K.
,
Wang
,
Z.
, and
Lei
,
H.
,
2018
, “
An Improved Visual Investigation on Gas–Water Flow Characteristics and Trapped Gas Formation Mechanism of Fracture–Cavity Carbonate Gas Reservoir
,”
J. Nat. Gas Sci. Eng.
,
49
, pp.
213
226
.
14.
Blunt
,
M. J.
,
2017
,
Multiphase Flow in Undefined Permeable Media: A Pore-Scale Perspective
,
Cambridge University Press
,
Cambridge, UK
.
15.
Al-Dhahli
,
A. R.
,
Geiger
,
S.
, and
van Dijke
,
M. I.
,
2012
, “
Accurate Modelling of Pore-Scale Film and Layer Flow for Three-Phase EOR in Carbonate Rocks With Arbitrary Wettability
,”
SPE Improved Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 14–18
, OnePetro.
16.
Geistlinger
,
H.
, and
Mohammadian
,
S.
,
2015
, “
Capillary Trapping Mechanism in Strongly Water Wet Systems: Comparison Between Experiment and Percolation Theory
,”
Adv. Water Res.
,
79
, pp.
35
50
.
17.
Chen
,
X.
, and
Mohanty
,
K. K.
,
2021
, “
Pore-Scale Study of Oil Recovery by Gas and Foam in a Fractured Carbonate Rock at Different Gas–Oil Interfacial Tension
,”
Energy Fuels
,
35
(
5
), pp.
3788
3797
.
18.
Fan
,
J. S.
,
2005
, “
Reservoir Characteristics of Carbonate Oil and Gas Fields in the World and Their Main Controlling Factors of Reservoir Formation
,”
Geol. Foregr.
,
12
(
3
), pp.
23
30
.
19.
Rostami
,
A.
,
Daneshi
,
A.
, and
Miri
,
R.
,
2020
, “
Proposing a Rigorous Empirical Model for Estimating the Bubble Point Pressure in Heterogeneous Carbonate Reservoirs
,”
Adv. Geo-Energy Res.
,
4
(
2
), pp.
126
134
.
20.
Rao
,
Y.
,
Yang
,
Z. M.
,
Zhang
,
Y. P.
,
Wu
,
Z.K.
, and
Liu
,
C.
,
2022
, “
Progress of Research on the Effect of Degassing on Fluid Percolation Patterns in Tight Reservoirs
,”
Sci. Technol. Her.
,
40
(
8
), pp.
104
114
.
21.
Zhao
,
W. Q.
,
Zhao
,
L.
,
Wang
,
X. D.
,
Wang
,
S. Q.
,
Sun
,
M.
, and
Wang
,
C.G.
,
2016
, “
Phase Characteristics of Crude Oil From Weakly Volatile Carbonate Reservoirs and Countermeasures for Water Injection Development
,”
Pet. Explor. Dev.
,
43
(
2
), pp.
281
286
.
22.
Liu
,
C.
,
Zhang
,
L.
,
Li
,
Y.
,
Liu
,
F.
,
Martyushev
,
D. A.
, and
Yang
,
Y.
,
2022
, “
Effects of Microfractures on Permeability in Carbonate Rocks Based on Digital Core Technology
,”
Adv. Geo-Energy Res.
,
6
(
1
), pp.
86
90
.
23.
Wu
,
L. R.
,
Huang
,
C. G.
,
Yuan
,
J. Y.
, et al
,
2015
, “
Dual Pore Media in Salinized Lake Basin Mélange Rocks and Their Hydrocarbon Reservoir Significance
,”
J. Earth Sci. Environ.
,
37
(
02
), pp.
59
67
.
24.
Han
,
X.
,
Tan
,
X.
,
Li
,
X.
,
Pang
,
Y.
, and
Zhang
,
L.
,
2021
, “
Water Invasion Performance of Complex Fracture-Vuggy Gas Reservoirs Based on Classification Modeling
,”
Adv. Geo-Energy Res.
,
5
(
2
), pp.
222
232
.
25.
Kang
,
B. T.
,
Pi
,
J.
, and
Li
,
C. Y.
,
2020
, “
Study on Optimization of Injection and Extraction in Thick Pore Type Carbonate Reservoirs
,”
Petrochem. Appl.
,
39
(
9
), pp.
60
66
.
26.
You
,
Z. J.
,
Lin
,
J. Z.
,
Shao
,
X. M.
, and
Zhang
,
W. F.
,
2004
, “
Stability and Drag Reduction in Transient Channel Flow of Fibre Suspension
,”
Chin. J. Chem. Eng.
,
12
(
3
), p.
319
.
27.
Lu
,
X. B.
,
Rong
,
Y. S.
,
Li
,
X. B.
, and
Wu
,
F.
,
2017
, “
Construction of Injection-Production Well Pattern in Fractured-Vuggy Carbonate Reservoir and Its Development Significance: A Case Study From Tahe Oilfield in Tarim Basin
,”
Oil Gas Geol.
,
38
(
4
), pp.
658
664
.
28.
Wu
,
W. M.
,
Qin
,
F.
, and
Dong
,
O. Y.
,
2015
, “
Study on Water Plugging Technology in Fractured-Cavity Carbonate Reservoirs, Tahe Oilfield
,”
Edit. Depart. Petrol. Geol. Recov. Eff.
,
20
(
6
), pp.
104
107
.
29.
Yuan
,
M. S.
,
Pan
,
M.
, and
Tong
,
H. M.
,
2000
,
Exploration of Low Permeability Fractured Reservoirs
,
Petroleum Industry Press
,
Beijing
.
30.
Dai
,
C. L.
,
Zou
,
C. W.
,
Liu
,
Y. F.
,
You
,
Q.
,
Tong
,
Y.
,
Wu
,
C.
, and
Shan
,
C.H.
,
2018
, “
Elastic Jelly Dispersion and Pore Throat Matching Law and Deep Regulation Mechanism
,”
J. Pet.
,
39
(
4
), pp.
427
434
.
31.
Zhu
,
D.
,
Wang
,
Y.
,
Cui
,
M.
,
Zhou
,
F.
,
Zhang
,
Y.
,
Liang
,
C.
,
Zou
,
H.
, and
Yao
,
F.
,
2022
, “
Effects of Spent Viscoelastic-Surfactant Acid Flow on Wormholes Propagation and Diverting Performance in Heterogeneous Carbonate Reservoir
,”
Energy Rep.
,
8
, pp.
8321
8332
.
32.
Henriquez
,
A.
, and
Jourdan
,
C. A.
,
1996
, “
Management of Sweep-Efficiency by Gas-Based IOR Methods
,”
European Petroleum Conference
,
Richardson, TX
,
OnePetro
, Paper No. SPE-36843-MS.
33.
Fizmorris
,
R. E.
,
Kelsey
,
F. J.
, and
Pande
,
K. K.
,
1992
, “
Effect of Crossflow on Sweep Efficiency in Water/Oil Displacements in Heterogeneous Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
Richardson, TX
,
OnePetro
, Paper No. SPE-24901-MS.
34.
Zeng
,
L. B.
,
2008
,
Formation and Distribution of Fractures in Low-Permeability Sandstone Reservoirs
,
Science Press
,
Beijing
.
35.
Xiong
,
W. L.
,
Pan
,
Z. Y.
, and
Wang
,
B.
,
1999
, “
Residual Oil Distribution and Adjustment Techniques in Fracture Development Areas of Extra-Low Permeability Oil Fields
,”
Pet. Explor. Dev.
,
26
(
5
), pp.
46
48
.
36.
Zhou
,
D. H.
,
Jiao
,
F. Z.
, and
Ge
,
J. L.
,
2004
, “
Recent Advances in Fracture Seepage Research
,”
Offshore Pet.
,
24
(
2
), pp.
34
38
.
37.
Dietzel
,
H.
, and
Jkoehler
,
M.
,
1998
, “
Stimulation of a Low Permeability Natural Fractured Reservoir in the North-West German Carboniferous
,”
SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium
,
Richardson, TX
,
OnePetro
, Paper No. SPE-39913-MS.
38.
Yang
,
Z. J.
,
1998
, “
Research on the Mechanism of Mixed-Phase Oil Drive and Prospect of Application
,”
Oil Gas Recov. Technol.
,
1
, pp.
71
87
.
39.
Mo
,
F.
,
Du
,
Z.
,
Peng
,
X.
,
Tang
,
Y.
, and
Sun
,
H.
,
2017
, “
Pore-Scale Analysis of Flow Resistance in Tight Sandstones and Its Relationship With Permeability Jail
,”
J. Nat. Gas Sci. Eng.
,
44
, pp.
314
327
.
40.
Xing
,
C.
,
Yin
,
H.
,
Yuan
,
H.
,
Fu
,
J.
, and
Xu
,
G.
,
2022
, “
Pressure Transient Analysis for Fracture-Cavity Carbonate Reservoirs With Large-Scale Fractures–Caves in Series Connection
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
052901
.
You do not currently have access to this content.