Abstract

In this work, the authors show an apparent connection in the behaviors of superfluid Helium in its two stable isotopes, where the lambda transition to superfluidity is seen to correspond to a theoretical Bose–Einstein condensation temperature of the ideal parts of the two isotopes. A statistical model for the physical and thermodynamic behaviors is developed based on their known properties, where the equations of the partition function, entropy, and specific heat are constructed in such a way where one term applies to the ideal part of the fluid and the second to its interacting part. The calculated temperatures for the formation of a theoretical Bose–Einstein condensation in the ideal parts of both isotopes almost completely matches their lambda transition temperatures. The models of the two isotopes are very different due to the fermionic nature of Helium-3, for which the model is formed based on the Bardeen–Cooper–Schrieffer (BCS) theory of Cooper pairs of fermions. Using this formulation, the Bose–Einstein condensation temperature for the pairs of Helium-3 atoms is calculated, as opposed to the condensation temperature for Helium-4, which is directly derived from the bosonic atoms, leading to its much lower value than Helium-4.

References

1.
Slater
,
J. C.
,
1928
, “
The Normal State of Helium
,”
Phys. Rev.
,
32
(
3
), p.
349
.
2.
Kim
,
E.
, and
Chan
,
M. H. W.
,
2004
, “
Observation of Superflow in Solid Helium
,”
Science
,
305
(
5692
), pp.
1941
1944
.
3.
Putterman
,
S. J.
,
1974
,
Superfluid Hydrodynamics
,
Elsevier
,
Amsterdam, The Netherlands
.
4.
McCarty
,
R. D.
,
1972
,
Thermophysical Properties of Helium-4 From 2 to 1500 K With Pressures to 1000 Atmospheres
, Vol.
631
,
US Government Printing Office
,
Gaithersburg, MD
.
5.
Tisza
,
L.
,
1938
, “
Transport Phenomena in Helium II
,”
Nature
,
141
(
3577
), pp.
913
913
.
6.
London
,
F.
,
1938
, “
The Λ-Phenomenon of Liquid Helium and the Bose–Einstein Degeneracy
,”
Nature
,
141
(
3571
), pp.
643
644
.
7.
Landau
,
L.
,
1949
, “
On the Theory of Superfluidity
,”
Phys. Rev.
,
75
(
5
), p.
884
.
8.
Mamyrin
,
B. A.
, and
Tolstikhin
,
I. N.
,
2013
,
Helium Isotopes in Nature
,
Elsevier
,
Amsterdam, The Netherlands
.
9.
Suhl
,
H.
,
Matthias
,
B. T.
, and
Walker
,
L. R.
,
1959
, “
Bardeen–Cooper–Schrieffer Theory of Superconductivity in the Case of Overlapping Bands
,”
Phys. Rev. Lett.
,
3
(
12
), p.
552
.
10.
Domenikos
,
G. R.
,
Rogdakis
,
E.
, and
Koronaki
,
I.
,
2021
, “
Studying the Superfluid Transformation in Helium 4 Through the Partition Function and Entropic Behavior
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
85642
,
American Society of Mechanical Engineers
, Paper No. V08BT08A008.
11.
Bogoliubov
,
N.
,
1947
, “
On the Theory of Superfluidity
,”
J. Phys.
,
11
(
1
), p.
23
.
12.
Pieri
,
P.
, and
Strinati
,
G. C.
,
2003
, “
Derivation of the Gross–Pitaevskii Equation for Condensed Bosons From the Bogoliubov–de Gennes Equations for Superfluid Fermions
,”
Phys. Rev. Lett.
,
91
(
3
), p.
030401
.
13.
Domenikos
,
G. R.
,
Rogdakis
,
E.
, and
Koronaki
,
I.
,
2021
, “
Continuous Equation of State and Thermodynamic Maps for Cryogenic Helium 4
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
85642
,
American Society of Mechanical Engineers
, Paper No. V08BT08A009.
14.
Domenikos
,
G. R.
,
Rogdakis
,
E.
, and
Koronaki
,
I.
,
2021
, “
Thermodynamic Behavior and Equation of State for Cryogenic Helium 3–4 Mixtures
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
85642
,
American Society of Mechanical Engineers
, Paper No. V08BT08A010.
15.
Brooks
,
J. S.
, and
Donnelly
,
R. J.
,
1977
, “
The Calculated Thermodynamic Properties of Superfluid Helium-4
,”
J. Phys. Chem. Ref. Data
,
6
(
1
), pp.
51
104
.
16.
Sears
,
F. W.
, and
Salinger
,
G. L.
,
1980
,
Thermodynamics, Kinetic Theory, and Statistical Thermodynamics
,
Addison-Wesley
,
Boston, MA
.
17.
Kim
,
M. B.
,
Svidzinsky
,
A.
,
Agarwal
,
G. S.
, and
Scully
,
M. O.
,
2018
, “
Entropy of the Bose–Einstein Condensate Ground State: Correlation Versus Groundstate Entropy
,”
Phys. Rev. A
,
97
(
1
), p.
013605
.
18.
Svidzinsky
,
A.
,
Kim
,
M.
,
Agarwal
,
G.
, and
Scully
,
M. O.
,
2018
, “
Canonical Ensemble Ground State and Correlation Entropy of Bose–Einstein Condensate
,”
New J. Phys.
,
20
(
1
), p.
013002
.
19.
Arp
,
V. D.
, and
McCarty
,
R. D.
,
1989
, “Thermophysical Properties of Helium-4 From 0.8 to 1500 k With Pressures to 2000 MPa,” Technical Report, National Institute of Standards and Technology.
20.
Romero-Rochín
,
V.
, and
Bagnato
,
V. S.
,
2005
, “
Thermodynamics of an Ideal Gas of Bosons Harmonically Trapped: Equation of State and Susceptibilities
,”
Brazilian J. Phys.
,
35
(
3A
), pp.
607
613
.
21.
Scully
,
M. O.
,
1999
, “
Condensation of N Bosons and the Laser Phase Transition Analogy
,”
Phys. Rev. Lett.
,
82
(
20
), p.
3927
.
22.
Tolmachev
,
V. V.
,
2000
, “
Superconducting Bose–Einstein Condensates of Cooper Pairs Interacting With Electrons
,”
Phys. Lett. A
,
266
(
4
), pp.
400
408
.
23.
Vollhardt
,
D.
, and
Wolfle
,
P.
,
2013
,
The Superfluid Phases of Helium 3
,
Courier Corporation
,
North Chelmsford, MA
.
24.
Cabrera
,
B.
, and
Peskin
,
M. E.
,
1989
, “
Cooper-Pair Mass
,”
Phys. Rev. B
,
39
(
10
), p.
6425
.
25.
Matsuo
,
M.
,
2006
, “
Spatial Structure of Neutron Cooper Pair in Low Density Uniform Matter
,”
Phys. Rev. C
,
73
(
4
), p.
044309
.
26.
Annett
,
J. F.
,
2004
,
Superconductivity, Superfluids and Condensates
, Vol.
5
,
Oxford University Press
,
Oxford, UK
.
27.
Xie
,
M.
,
2018
, “
Bose–Einstein Condensation Temperature of Finite Systems
,”
J. Stat. Mech.: Theory Exp.
,
2018
(
5
), p.
053109
.
28.
Arp
,
V. D.
,
1990
, “
State Equation of Liquid Helium-4 From 0.8 to 2.5 K
,”
J. Low Temp. Phys.
,
79
(
1
), pp.
93
114
.
29.
London
,
F.
,
1961
,
Superfluids
, Vol.
1
,
Dover Publications
,
New York, USA
.
30.
Huang
,
Y. H.
,
Chen
,
G. B.
, and
Arp
,
V. D.
,
2006
, “
Equation of State for Fluid Helium-3 Based on Debye Phonon Model
,”
Appl. Phys. Lett.
,
88
(
9
), p.
091905
.
31.
Baquero
,
R.
,
Quesada
,
D.
, and
Trallero-Giner
,
C.
,
1996
, “
BCS Universal Ratios Within the Van Hove Scenario
,”
Phys. C: Superconductivity
,
271
(
1–2
), pp.
122
126
.
32.
Lipa
,
J. A.
, and
Chui
,
T. C. P
,
1983
, “
Very High-Resolution Heatcapacity Measurements Near the Lambda Point of Helium
,”
Phys. Rev. Lett.
,
51
(
25
), p.
2291
.
You do not currently have access to this content.