Abstract

Formation resistivity is crucial for petrophysics and formation evaluation. Laboratory measurements and/or well logging can be used to provide resistivity data. Laboratory measurements are time-consuming and costly, limiting their use. Furthermore, certain log records may be missing in some segments for a variety of reasons, including instrument failure, poor hole conditions, and data loss due to storage and incomplete recording. The purpose of this study is to apply support vector machines (SVM), and functional networks (FN) to introduce intelligent models for formation resistivity prediction using other available logging parameters. The well logs include gamma ray, density, neutron, and sonic data. The predictive models were built using a data collection of roughly 4300 data points collected from vertical sections of complex reservoirs. For model training and testing, the data set was split at random in a 70:30 ratio. The predictive models were validated using a different set of data (around 1300 points) that had not been seen by the model. The models predicted the target with a good correlation coefficient (R) of around 0.93 and accepted root-mean-squared error (RMSE) of 0.3 for training and testing. The suggested methods for estimating formation resistivity from available logging parameters are shown to be reliable in this study. Resistivity prediction can fill the missing gaps in log tracks and may save money by removing resistivity logs running in all offset wells in the same field.

References

1.
Asquith
,
G.
, and
Krygowski
,
D.
,
2004
,
Basic Well Log Analysis for Geologists
, 2nd ed.,
The American Association of Petroleum Geologists
,
Tulsa, OK
.
2.
Evenick
,
J.
,
2008
,
Introduction to Well Logs & Subsurface Maps
,
PennWell Corp
,
Nashville, TN
.
3.
Serra
,
O.
,
1984
,
Fundamentals of Well-Log Interpretation.
, 1st ed.,
Elsevier Science Publishers B.V.
,
Amsterdam, The Netherlands
.
4.
Archie
,
G. E.
,
1942
, “
The Electrical Resistivity Log As an Aid in Determining Some Reservoir Characteristics
,”
Trans. AIME
,
146
(
1
), pp.
9
16
.
5.
Mavko
,
G.
,
Mukerji
,
T.
, and
Dovorkin
,
J.
,
2009
,
The Rock Physics Handbook—Tools for Seismic Analysis of Porous Media
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
6.
Timur
,
A.
,
1982
, “
Advances in Well Logging
,”
J. Pet. Technol.
,
34
(
6
), pp.
1181
1185
.
7.
Rajabi
,
M.
,
Bohloli
,
B.
, and
Gholampour Ahangar
,
E.
,
2010
, “
Intelligent Approaches for Prediction of Compressional, Shear and Stoneley Wave Velocities From Conventional Well Log Data: A Case Study From the Sarvak Carbonate Reservoir in the Abadan Plain (Southwestern Iran)
,”
Comput. Geosci.
,
36
(
5
), pp.
647
664
.
8.
Mohaghegh
,
S.
,
2000
, “
Virtual-Intelligence Applications in Petroleum Engineering: Part I—Artificial Neural Networks
,”
J. Pet. Technol.
,
52
(
9
), pp.
64
73
.
9.
Ibrahim
,
A. F.
,
Elkatatny
,
S.
,
Abdelraouf
,
Y.
, and
Al Ramadan
,
M.
,
2022
, “
Application of Various Machine Learning Techniques in Predicting Water Saturation in Tight Gas Sandstone Formation
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
083009
.
10.
Al Dhaif
,
R.
,
Ibrahim
,
A. F.
, and
Elkatatny
,
S.
,
2022
, “
Prediction of Surface Oil Rates for Volatile Oil and Gas Condensate Reservoirs Using Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
033001
.
11.
Elsafi
,
S. H.
,
2014
, “
Artificial Neural Networks (ANNs) for Flood Forecasting at Dongola Station in the River Nile, Sudan
,”
Alexandria Eng. J.
,
53
(
3
), pp.
655
662
.
12.
Doraisamy
,
H.
,
Ertekin
,
T.
, and
Grader
,
A. S.
,
1998
, “
Key Parameters Controlling the Performance of Neuro-Simulation Applications in Field Development
,”
Proceedings—SPE Annual Western Regional Meeting
,
Pittsburgh, PA
,
Nov. 9
, pp.
233
241
.
13.
Moussa
,
T.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
Development of New Permeability Formulation From Well Log Data Using Artificial Intelligence Approaches
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072903
.
14.
Abdelgawad
,
K.
,
Elkatatny
,
S.
,
Moussa
,
T.
,
Mahmoud
,
M.
, and
Patil
,
S.
,
2019
, “
Real-Time Determination of Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032908
.
15.
Gamal
,
H.
,
Abdelaal
,
A.
, and
Elkatatny
,
S.
,
2021
, “
Machine Learning Models for Equivalent Circulating Density Prediction From Drilling Data
,”
ACS Omega
,
6
(
41
), pp.
27430
27442
.
16.
Gamal
,
H.
,
Abdelaal
,
A.
,
Alsaihati
,
A.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2021
, “
Artificial Neural Network Model for Predicting the Equivalent Circulating Density From Drilling Parameters
,”
55th US Rock Mechanics/Geomechanics Symposium
,
Virtual
,
June 18
.
17.
Al-Abdul Jabbar
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
Predicting Formation Tops While Drilling Using Artificial Intelligence
,”
Society of Petroleum Engineers—SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition 2018, SATS 2018
,
Dammam, Saudi Arabia
,
Apr. 23
.
18.
Elkatatny
,
S.
, and
Mahmoud
,
M.
,
2018
, “
Development of New Correlations for the Oil Formation Volume Factor in Oil Reservoirs Using Artificial Intelligent White Box Technique
,”
Petroleum
,
4
(
2
), pp.
178
186
.
19.
Gowida
,
A.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2019
, “
Application of Artificial Neural Network to Predict Formation Bulk Density While Drilling
,”
Petrophysics
,
60
(
5
), pp.
660
674
.
20.
Zazoun
,
R. S.
,
2013
, “
Fracture Density Estimation From Core and Conventional Well Logs Data Using Artificial Neural Networks: The Cambro-Ordovician Reservoir of Mesdar Oil Field, Algeria
,”
J. Afr. Earth Sci.
,
83
(
1
), pp.
55
73
.
21.
Siddig
,
O.
, and
Elkatatny
,
S.
,
2021
, “
Workflow to Build a Continuous Static Elastic Moduli Profile From the Drilling Data Using Artificial Intelligence Techniques
,”
J. Pet. Explor. Prod. Technol.
,
11
(
10
), pp.
3713
3722
.
22.
Siddig
,
O. M.
,
Al-Afnan
,
S. F.
,
Elkatatny
,
S. M.
, and
Abdulraheem
,
A.
,
2022
, “
Drilling Data-Based Approach to Build a Continuous Static Elastic Moduli Profile Utilizing Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023001
.
23.
Siddig
,
O.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2022
, “
Applying Different Artificial Intelligence Techniques in Dynamic Poisson’s Ratio Prediction Using Drilling Parameters
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073006
.
24.
Siddig
,
O.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2021
, “
Real-Time Prediction of Poisson’s Ratio From Drilling Parameters Using Machine Learning Tools
,”
Sci. Rep.
,
11
(
1
), pp.
1
13
.
25.
Abdelaal
,
A.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2021
, “
Data-Driven Modeling Approach for Pore Pressure Gradient Prediction While Drilling From Drilling Parameters
,”
ACS Omega
,
6
(
21
), pp.
13807
13816
.
26.
Abdelaal
,
A.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2021
, “
Formation Pressure Prediction From Mechanical and Hydraulic Drilling Data Using Artificial Neural Networks
,”
55th US Rock Mechanics/Geomechanics Symposium
,
Virtual
,
June
.
27.
Moazzeni
,
A.
, and
Haffar
,
M. A.
,
2015
, “
Artificial Intelligence for Lithology Identification Through Real-Time Drilling Data
,”
J. Earth Sci. Clim. Change
,
6
(
3
), pp.
1
4
.
28.
Salehi
,
M. M.
,
Rahmati
,
M.
,
Karimnezhad
,
M.
, and
Omidvar
,
P.
,
2017
, “
Estimation of the Non-Records Logs From Existing Logs Using Artificial Neural Networks
,”
Egypt. J. Pet.
,
26
(
4
), pp.
957
968
.
29.
Sbiga
,
H.
, and
Mousa
,
N.
,
2015
, “
Prediction of True Resistivity and Resistivity Index Using Neural Networks With Different Combinations of Wireline Logs
,”
Society of Petroleum Engineers—SPE North Africa Technical Conference and Exhibition 2015
,
Cairo, Egypt
,
Sept. 14
, Society of Petroleum Engineers, pp.
1105
1122
.
30.
Ważny
,
J.
,
Stefaniuk
,
M.
, and
Cygal
,
A.
,
2021
, “
Estimation of Electrical Resistivity Using Artificial Neural Networks: A Case Study From Lublin Basin, SE Poland
,”
Acta Geophys.
,
69
(
2
), pp.
631
642
.
31.
Hemphill
,
T.
,
2015
, “
Validation of Drillpipe Rotation Hydraulics Using Drillpipe Eccentricity As a Key Factor
,”
Society of Petroleum Engineers—SPE/IATMI Asia Pacific Oil and Gas Conference and Exhibition
,
Nusa Dua, Bali, Indonesia
,
Oct. 20
.
32.
Thunder
,
M.
,
Moore
,
D. S.
, and
McCabe
,
G. P.
,
1995
, “
Introduction to the Practice of Statistics
,”
Math. Gaz.
,
79
(
484
), p.
252
.
33.
Dawson
,
R.
,
2011
, “
How Significant Is a Boxplot Outlier?
J. Stat. Educ.
,
19
(
2
), pp.
1
14
.
34.
Castillo
,
E.
,
Hadi
,
A. S.
,
Gutiérrez
,
J. M.
, and
Lacruz
,
B.
,
2001
, “
Some Applications of Functional Networks in Statistics and Engineering
,”
Technometrics
,
43
(
1
), pp.
10
24
.
35.
Anifowose
,
F.
,
Labadin
,
J.
, and
Abdulraheem
,
A.
,
2013
, “
A Least-Square-Driven Functional Networks Type-2 Fuzzy Logic Hybrid Model for Efficient Petroleum Reservoir Properties Prediction
,”
Neural Comput. Appl.
,
23
(
S1
), pp.
179
190
.
36.
Castillo
,
E.
,
Cobo
,
A.
,
Gutiérrez
,
J. M.
, and
Pruneda
,
R. E.
,
1999
,
Functional Networks With Applications
,
Springer
,
New York
.
37.
Anifowose
,
F.
, and
Abdulraheem
,
A.
,
2011
, “
Fuzzy Logic-Driven and SVM-Driven Hybrid Computational Intelligence Models Applied to Oil and Gas Reservoir Characterization
,”
J. Nat. Gas Sci. Eng.
,
3
(
3
), pp.
505
517
.
38.
Vapnik
,
N. V.
,
1995
,
The Nature of Statistical Learning Theory
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
39.
Awad
,
M.
, and
Khanna
,
R.
,
2015
,
Efficient Learning Machines
,
Apress
,
New York City
, pp.
39
66
.
40.
Kecman
,
V.
,
2005
, “Support Vector Machines—An Introduction,”
Support Vector Machines: Theory and Applications
,
Springer
,
Berlin
, pp.
1
47
.
41.
Boswell
,
D.
,
2002
,
An Introduction to Support Vector Machines
,
Departement of Computer Science and Engineering, University of California
,
San Diego, CA
, pp.
3
17
.
You do not currently have access to this content.