Abstract

Photovoltaic (PV) is characterized by random and intermittent. As increasing popularity of PV, it makes PV power prediction increasingly significant for efficiency and stability of the power grid. At present, prediction models of PV power based on deep learning show superior performance, but they ignore the interdependent mechanism of prediction error along the input characteristics of the neural network. This paper proposed a self-attention mechanism (SAM)-based hybrid one-dimensional convolutional neural network (1DCNN) and long short-term memory (LSTM) combined method (named 1DCNN-LSTM-SAM). In the proposed model, SAM redistributes the neural weights in 1DCNN-LSTM, and then 1DCNN-LSTM further extracts the space-time information of effective PV power. The polysilicon PV arrays data in Australia are employed to test and verify the proposed model and other five competition models. The results show that the application of SAM to 1DCNN-LSTM improves the ability to capture the global dependence between inputs and outputs in the learning process and the long-distance dependence of its sequence. In addition, mean absolute percentage error of the 1DCNN-LSTM-SAM under sunny day, partially cloudy day, and cloudy day weather types has increased by 24.2%, 14.4%, and 18.3%, respectively, compared with the best model among the five models. Furthermore, the weight distribution mechanism of self-attention to the back end of LSTM was analyzed quantitatively and the superiority of SAM was verified.

References

1.
Deng
,
X. C.
,
Deng
,
Z. W.
,
Song
,
Z. Y.
,
Lin
,
X. K.
, and
Hu
,
X. S.
,
2021
, “
Economic Control for a Residential Photovoltaic-Battery System by Combining Stochastic Model Predictive Control and Improved Correction Strategy
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
054501
.
2.
Houchati
,
M.
,
Beitelmal
,
A. H.
, and
Khraisheh
,
M.
,
2022
, “
Predictive Modeling for Rooftop Solar Energy Throughput: A Machine Learning-Based Optimization for Building Energy Demand Scheduling
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
011302
.
3.
Aldosary
,
A.
,
Rawa
,
M.
,
Ali
,
Z. M.
,
Abusorrah
,
A.
,
Rezvani
,
A.
, and
Suzuki
,
K.
,
2021
, “
Applying a Theta-Krill Herd Algorithm to Energy Management of a Microgrid Considering Renewable Energies and Varying Weather Conditions
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082108
.
4.
Sun
,
M. C.
,
Feng
,
C.
, and
Zhang
,
J.
,
2020
, “
Probabilistic Solar Power Forecasting Based on Weather Scenario Generation
,”
Appl. Energy
,
266
, p.
114823
.
5.
Haupt
,
S. E.
,
Dettling
,
S.
,
Williams
,
J. K.
,
Pearson
,
J.
,
Jensen
,
T.
,
Brummet
,
T.
,
Kosovic
,
B.
,
Wiener
,
G.
,
McCandless
,
T.
, and
Burghardt
,
C.
,
2017
, “
Blending Distributed Photovoltaic and Demand Load Forecasts
,”
Sol. Energy
,
157
, pp.
542
551
.
6.
Raza
,
M. Q.
,
Mithulananthan
,
N.
, and
Summerfield
,
A.
,
2018
, “
Solar Output Power Forecast Using an Ensemble Framework With Neural Predictors and Bayesian Adaptive Combination
,”
Sol. Energy
,
166
, pp.
226
241
.
7.
Agoua
,
X. G.
,
Girard
,
R.
, and
Kariniotakis
,
G.
,
2019
, “
Probabilistic Models for Spatio-Temporal Photovoltaic Power Forecasting
,”
IEEE Trans. Sustain. Energy
,
10
(
2
), pp.
780
789
.
8.
Bracale
,
A.
,
Carpinelli
,
G.
, and
De Falco
,
P.
,
2017
, “
A Probabilistic Competitive Ensemble Method for Short-Term Photovoltaic Power Forecasting
,”
IEEE Trans. Sustain. Energy
,
8
(
2
), pp.
551
560
.
9.
Monteiro
,
C.
,
Santos
,
T.
,
Fernandez-Jimenez
,
L.
,
Ramirez-Rosado
,
I.
, and
Terreros-Olarte
,
M.
,
2013
, “
Short-Term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity
,”
Energies
,
6
(
5
), pp.
2624
2643
.
10.
Prema
,
V.
, and
Rao
,
K.U.
,
2015
, “
Development of Statistical Time Series Models for Solar Power Prediction
,”
Renew. Energy
,
83
, pp.
100
109
.
11.
Raza
,
M. Q.
,
Nadarajah
,
M.
, and
Ekanayake
,
C.
,
2017
, “
Demand Forecast of PV Integrated Bioclimatic Buildings Using Ensemble Framework
,”
Appl. Energy
,
208
, pp.
1626
1638
.
12.
Yang
,
D. Z.
, and
Dong
,
Z. B.
,
2018
, “
Operational Photovoltaics Power Forecasting Using Seasonal Time Series Ensemble
,”
Sol. Energy
,
166
, pp.
529
541
.
13.
Wang
,
H. Z.
,
Yi
,
H. Y.
,
Peng
,
J. C.
,
Wang
,
G. B.
,
Liu
,
Y. T.
,
Jiang
,
H.
, and
Liu
,
W. X.
,
2017
, “
Deterministic and Probabilistic Forecasting of Photovoltaic Power Based on Deep Convolutional Neural Network
,”
Energy Convers. Manage.
,
153
, pp.
409
422
.
14.
Gamarro
,
H.
,
Gonzalez
,
J. E.
, and
Ortiz
,
L. E.
,
2019
, “
On the Assessment of a Numerical Weather Prediction Model for Solar Photovoltaic Power Forecasts in Cities
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
061203
.
15.
Wang
,
G. C.
,
Su
,
Y.
, and
Shu
,
L. J.
,
2016
, “
One-Day-Ahead Daily Power Forecasting of Photovoltaic Systems Based on Partial Functional Linear Regression Models
,”
Renew. Energy
,
96
, pp.
469
478
.
16.
Sanjari
,
M. J.
, and
Gooi
,
H. B.
,
2017
, “
Probabilistic Forecast of PV Power Generation Based on Higher Order Markov Chain
,”
IEEE Trans. Power Syst.
,
32
(
4
), pp.
2942
2952
.
17.
Wolff
,
B.
,
Kühnert
,
J.
,
Lorenz
,
E.
,
Kramer
,
O.
, and
Heinemann
,
D.
,
2016
, “
Comparing Support Vector Regression for PV Power Forecasting to a Physical Modeling Approach Using Measurement, Numerical Weather Prediction, and Cloud Motion Data
,”
Sol. Energy
,
135
, pp.
197
208
.
18.
Dolara
,
A.
,
Leva
,
S.
, and
Manzolini
,
G.
,
2015
, “
Comparison of Different Physical Models for PV Power Output Prediction
,”
Sol. Energy
,
119
, pp.
83
99
.
19.
Kim
,
K.
, and
Hur
,
J.
,
2019
, “
Weighting Factor Selection of the Ensemble Model for Improving Forecast Accuracy of Photovoltaic Generating Resources
,”
Energies
,
12
(
17
), p.
3315
.
20.
Zhou
,
Y.
,
Zhou
,
N. R.
,
Gong
,
L. H.
, and
Jiang
,
M. L.
,
2020
, “
Prediction of Photovoltaic Power Output Based on Similar Day Analysis, Genetic Algorithm and Extreme Learning Machine
,”
Energy
,
204
, p.
117894
.
21.
Mellit
,
A.
,
Pavan
,
A. M.
,
Ogliari
,
E.
,
Leva
,
S.
, and
Lughi
,
V.
,
2020
, “
Advanced Methods for Photovoltaic Output Power Forecasting: A Review
,”
Appl. Sci.
,
10
(
2
), p.
487
.
22.
Ammar
,
M. B.
,
Ammar
,
R. B.
, and
Oualha
,
A.
,
2021
, “
Photovoltaic Power Prediction for Solar Car Park Lighting Office Energy Management
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031303
.
23.
Huang
,
C. M.
,
Chen
,
S. J.
,
Yang
,
S. P.
, and
Kuo
,
C. J.
,
2015
, “
One-Day-Ahead Hourly Forecasting for Photovoltaic Power Generation Using an Intelligent Method With Weather-Based Forecasting Models
,”
IET Gener. Transm. Distrib.
,
9
(
14
), pp.
1874
1882
.
24.
Dawan
,
P.
,
Sriprapha
,
K.
,
Kittisontirak
,
S.
,
Boonraksa
,
T.
,
Junhuathon
,
N.
,
Titiroongruang
,
W.
, and
Niemcharoen
,
S.
,
2020
, “
Comparison of Power Output Forecasting on the Photovoltaic System Using Adaptive Neuro-Fuzzy Inference Systems and Particle Swarm Optimization-Artificial Neural Network Model
,”
Energies
,
13
(
2
), p.
351
.
25.
Wei
,
C. C.
,
2019
, “
Evaluation of Photovoltaic Power Generation by Using Deep Learning in Solar Panels Installed in Buildings
,”
Energies
,
12
(
18
), p.
3564
.
26.
de Paiva
,
G. M.
,
Pimentel
,
S. P.
,
Alvarenga
,
B. P.
,
Marra
,
E. G.
,
Mussetta
,
M.
, and
Leva
,
S.
,
2020
, “
Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks
,”
Energies
,
13
(
11
), p.
3005
.
27.
Lee
,
D.
, and
Kim
,
K.
,
2019
, “
Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information
,”
Energies
,
12
(
2
), p.
215
.
28.
Zang
,
H. X.
,
Cheng
,
L. L.
,
Ding
,
T.
,
Cheung
,
K. W.
,
Liang
,
Z.
,
Wei
,
Z. N.
, and
Sun
,
G. Q.
,
2018
, “
Hybrid Method for Short-Term Photovoltaic Power Forecasting Based on Deep Convolutional Neural Network
,”
IET Gener. Transm. Distrib.
,
12
(
20
), pp.
4557
4567
.
29.
Han
,
Y. T.
,
Wang
,
N. B.
,
Ma
,
M.
,
Zhou
,
H.
,
Dai
,
S. Y.
, and
Zhu
,
H. L.
,
2019
, “
A PV Power Interval Forecasting Based on Seasonal Model and Nonparametric Estimation Algorithm
,”
Sol. Energy.
,
184
, pp.
515
526
.
30.
Jallal
,
M. A.
,
Chabaa
,
S.
, and
Zeroual
,
A.
,
2020
, “
A Novel Deep Neural Network Based on Randomly Occurring Distributed Delayed PSO Algorithm for Monitoring the Energy Produced by Four Dual-Axis Solar Trackers
,”
Renew. Energy
,
149
, pp.
1182
1196
.
31.
Li
,
L. L.
,
Wen
,
S. Y.
,
Tseng
,
M. L.
, and
Wang
,
C. S.
,
2019
, “
Renewable Energy Prediction: A Novel Short-Term Prediction Model of Photovoltaic Output Power
,”
J. Clean Prod.
,
228
, pp.
359
375
.
32.
Basiri
,
M.E.
,
Nemati
,
S.
,
Abdar
,
M.
,
Cambria
,
E.
, and
Acharya
,
U.R.
,
2021
, “
ABCDM: An Attention-Based Bidirectional CNN-RNN Deep Model for Sentiment Analysis
,”
Future Gener. Comput. Syst.
,
115
, pp.
279
294
.
33.
Sun
,
G. C.
,
Ding
,
S. F.
,
Sun
,
T. F.
, and
Zhang
,
C. L.
,
2020
, “
SA-CapsGAN: Using Capsule Networks With Embedded Self-Attention for Generative Adversarial Network
,”
Neurocomputing
,
423
, pp.
399
406
.
34.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A.
,
Kaiser
,
L.
, and
Polosukhin
,
L.
,
2017
, “
Attention Is All You Need
,”
Neural Inf. Process. Syst.
,
30
, pp.
5998
6008
.
35.
Zhang
,
Z. F.
,
Lv
,
Z. M.
,
Gan
,
C. Q.
, and
Zhu
,
Q. Y.
,
2020
, “
Human Action Recognition Using Convolutional LSTM and Fully-Connected LSTM With Different Attentions
,”
Neurocomputing
,
410
, pp.
304
316
.
36.
Xu
,
C. F.
,
Feng
,
J.
,
Zhao
,
P. P.
,
Zhuang
,
F. Z.
,
Wang
,
D. Q.
,
Liu
,
Y. C.
, and
Sheng
,
V. S.
,
2020
, “
Long- and Short-Term Self-Attention Network for Sequential Recommendation
,”
Neurocomputing
,
423
, pp.
580
589
.
37.
Song
,
G. X.
,
Wang
,
Z. J.
,
Han
,
F.
,
Ding
,
S. Y.
, and
Gu
,
X. C.
,
2020
, “
Music Auto-Tagging Using Scattering Transform and Convolutional Neural Network With Self-Attention
,”
Appl. Soft Comput.
,
96
, p.
106702
.
38.
Li
,
Y. D.
,
Zhang
,
L.
,
Lv
,
Z.
, and
Wang
,
W.
,
2021
, “
Detecting Anomalies in Intelligent Vehicle Charging and Station Power Supply Systems With Multi-Head Attention Models
,”
IEEE Trans. Intell. Transp. Syst.
,
22
(
1
), pp.
555
564
.
39.
Wang
,
K. J.
,
Qi
,
X. X.
, and
Liu
,
H. D.
,
2019
, “
A Comparison of Day-Ahead Photovoltaic Power Forecasting Models Based on Deep Learning Neural Network
,”
Appl. Energy
,
251
, p.
113315
.
40.
Gu
,
B.
,
Shen
,
H. Q.
,
Lei
,
X. H.
,
Hu
,
H.
, and
Liu
,
X. Y.
,
2021
, “
Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Using a Novel Forecasting Method
,”
Appl. Energy
,
299
, p.
117291
.
41.
Heo
,
J.
,
Song
,
K.
,
Han
,
S.
, and
Lee
,
D.E.
,
2021
, “
Multi-Channel Convolutional Neural Network for Integration of Meteorological and Geographical Features in Solar Power Forecasting
,”
Appl. Energy
,
295
, p.
117083
.
You do not currently have access to this content.