Abstract

Under slug flow conditions, electrical submersible pumps (ESPs) show a low efficiency due to Taylor bubbles, which cause pressure surging and gas pockets and the further deterioration of pressure boosting ability. In this study, a novel downhole bubble breaker is designed for mitigating the impact in ESP under slug flow conditions. The computational fluid dynamics-population balance model (CFD-PBM) coupled approach was used to calculate the bubble breaker's average bubble diameter to evaluate its efficiency. Meanwhile, experimental studies were conducted and compared with numerical results. Also, matlab and DIP-image technology was used to calculate the bubble diameter. Compared with experimental results, the simulation results agree well. Furthermore, the novel bubble breaker's performance was studied by orthogonal approach. The best result of range analysis is A2B3C4D1E4 (α = 30 deg, L = 300 mm, R = 2:1, vsg = 0.2 m/s, and vsl = 0.08 m/s), and sensitively analysis results present that the range of impact intensity are A (inlet angle) > E (superficial gas velocity) > B (total length) > D (superficial liquid velocity) > C (ratio of the gas–liquid channel). The optimal structure's bubble diameters are all less than that of the original structure, with a superficial gas velocity range of 0.2–0.6 m/s. The downstream bubble diameter of the optimal bubble is about 31.6% lower than the original structure at the maximum value point.

References

1.
Zhu
,
J.
,
2017
, “
Experiments, CFD Simulation and Modeling of ESP Performance Under Gassy Conditions
,”
Ph.D. thesis
,
The University of Tulsa
,
Tulsa, OK
.
2.
Zhu
,
J.
,
Zhang
,
J.
,
Cao
,
G.
,
Zhao
,
Q.
,
Peng
,
J.
,
Zhu
,
H.
, and
Zhang
,
H. Q.
,
2019
, “
Modeling Flow Pattern Transitions in Electrical Submersible Pump Under Gassy Flow Conditions
,”
J. Pet. Sci. Eng.
,
180
, pp.
471
484
.
3.
Barrios
,
L.
,
2007
, “
Visualization and Modeling of Multiphase Performance Inside an Electrical Submersible Pump
,”
Ph.D. thesis
,
The University of Tulsa
,
Tulsa, OK
.
4.
Barrios
,
L.
,
Rojas
,
M.
,
Monteiro
,
G.
, and
Sleight
,
N.
,
2017
, “
Brazil Field Experience of ESP Performance With Viscous Emulsions and High Gas Using Multi-Vane Pump MVP and High Power ESPs
,”
Proceedings of the SPE Electric Submersible Pump Symposium
,
The Woodlands, TX
,
Apr. 24–28
.
5.
Gamboa
,
J.
,
2008
, “
Prediction of the Transition in Two-Phase Performance of an Electrical Submersible Pump
,”
Ph.D. dissertation
,
University of Tulsa
,
Tulsa, OK
.
6.
Oliva
,
G. B.
,
Galvão
,
H. L.
,
dos Santos
,
D. P.
,
Silva
,
R. E.
,
Maitelli
,
A. L.
,
Costa
,
R. O.
, and
Maitelli
,
C. W.
,
2017
, “
Gas Effect in Electrical-Submersible-Pump-System Stage-by-Stage Analysis
,”
SPE Prod. Oper.
,
32
, pp.
294
304
.
7.
Farar
,
B.
,
Samways
,
A. L.
, and
Bruun
,
H. H.
,
1995
, “
A Computer-Based Technique for Two-Phase Flow Measurements
,”
Meas. Sci. Technol.
,
6
(
10
), pp.
1528
1537
.
8.
Schäfer
,
T.
,
Bieberle
,
A.
,
Neumann
,
M.
, and
Hampel
,
U.
,
2015
, “
Application of Gamma-Ray Computed Tomography for the Analysis of Gas Holdup Distributions in Centrifugal Pumps
,”
Flow Meas. Instrum.
,
46
, pp.
262
267
.
9.
Krichnavaruk
,
S.
, and
Pavasant
,
P.
,
2002
, “
Analysis of Gas–Liquid Mass Transfer in an Airlift Contactor With Perforated Plates
,”
Chem. Eng. J.
,
89
(
1
), pp.
203
211
.
10.
Fernandez
,
R.·L.·J.
, and
Shrama
,
E.·A.
,
Bubble Breaker Assembly. CN, CN1942653 A
.
11.
Sobrino
,
C.
,
Acosta-Iborra
,
A.
,
Santana
,
D.
,
de Vega
M.
,
2009
, “
Bubble Characteristics in a Bubbling Fluidized Bed With a Rotating Distributor
,”
Int. J. Multiphase Flow
,
35
(
10
), pp.
970
976
.
12.
Gadallah
,
A. H.
, and
Siddiqui
,
K.
,
2015
, “
Bubble Breakup in Co-Current Upward Flowing Liquid Using Honeycomb Monolith Breaker
,”
Chem. Eng. Sci.
,
131
, pp. 22–40.
13.
Kalbfleisch
,
A.
, and
Siddiqui
,
K.
,
2017
, “
The Effect of Mesh-Type Bubble Breaker on Two-Phase Vertical Co-Flow
,”
Int. J. Multiphase Flow
,
94
, pp.
1
16
.
14.
Shi
,
Y.
,
Zhu
,
J.
,
Wang
,
H.
,
Zhu
,
H.
,
Zhang
,
J.
, and
Zhang
,
H. Q.
,
2021
, “
Experiments and Mechanistic Modeling of Viscosity Effect on a Multistage ESP Performance Under Viscous Fluid Flow. Proceedings of the Institution of Mechanical Engineers
,”
Part A: J. Power Energy
, p.
09576509211014974
.
15.
Shahid
,
S.
,
Hassan
,
A. Q.
,
Dol
,
S. S.
,
Gadala
,
M. S.
, and
Aris
,
M. S.
,
2021
, “
Effects of Gas Volume Fractions on Electrical Submersible Pump Performance Under Two-Phase Flow
,”
Platf.: A J. Eng. Sci.
5
(
2
), pp.
2
9
.
16.
He
,
D.
,
Zhao
,
L.
,
Chang
,
Z.
,
Zhang
,
Z.
,
Guo
,
P.
, and
Bai
,
B.
,
2021
, “
On the Performance of a Centrifugal Pump Under Bubble Inflow: Effect of Gas-Liquid Distribution in the Impeller
,”
J. Pet. Sci. Eng.
,
203
, p.
108587
.
17.
Brauer
,
N. T.
,
Rosales
,
B. S.
, and
de Lasa
,
H.
,
2021
, “
Single Bubble in a 3D Sand Fluidized Bed Gasifier Environment: A CFD-MPPIC Simulation
,”
Chem. Eng. Sci.
,
231
, p.
116291
.
18.
Deng
,
B.
,
Wang
,
M.
,
Yao
,
W.
,
Tang
,
H.
, and
Jiang
,
C.
,
2021
, “
Laboratory and Numerical Investigations on Characteristics of Air Bubbles in Plunging Breakers on Beach
,”
Ocean Eng.
,
224
, p.
108728
.
19.
Ha
,
Y. J.
,
Park
,
B. J.
,
Kim
,
Y. H.
, and
Lee
,
K. S.
,
2021
, “
Experimental Investigation on Structural Responses of a Partially Submerged 2D Flat Plate With Hammering and Breaking Waves for Numerical Validation
,”
J. Mar. Sci. Eng.
,
9
(
6
), p.
621
.
20.
Zhu
,
J.
,
Zhu
,
H.
,
Wang
,
Z.
,
Zhang
,
J.
,
Cuamatzi-Melendez
,
R.
,
Farfan
,
J. A. M.
, and
Zhang
,
H. Q.
,
2018
, “
Surfactant Effect on Air/Water Flow in a Multistage Electrical Submersible Pump (ESP)
,”
Exp. Therm. Fluid. Sci.
,
98
, pp.
95
111
.
21.
Yang
,
N.
, and
Xiao
,
Q.
,
2017
, “
A Mesoscale Approach for Population Balance Modeling of Bubble Size Distribution in Bubble Column Reactors
,”
Chem. Eng. Sci.
,
170
, pp.
241
250
.
22.
Chen
,
Y.
,
Patil
,
A.
,
Chen
,
Y.
,
Bai
,
C.
,
Wang
,
Y.
, and
Morrison
,
G.
,
2019
, “
Numerical Study on the First Stage Head Degradation in an Electrical Submersible Pump With Population Balance Model
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p. 022003.
23.
Valdés
,
J. P.
,
Asuaje
,
M.
, and
Ratkovich
,
N.
,
2021
, “
Study of an ESP's Performance Handling Liquid-Liquid Flow and Unstable OW Emulsions Part II: Coupled CFD-PBM Modelling
,”
J. Pet. Sci. Eng.
,
198
, p.
108227
.
24.
Chen
,
C.
,
Zhu
,
Y.
,
Chen
,
M.
, and
Shangguan
,
W.
,
2021
, “
A Novel Approach for Investigation of Collision Mechanisms Between Fine Particles in Electrostatic Precipitator Under Consideration of Brownian Effect
,”
Chem. Eng. Res. Des.
,
168
, pp.
96
108
.
25.
Zhang
,
H.
,
Yang
,
G.
,
Sayyar
,
A.
, and
Wang
,
T.
,
2019
, “
An Improved Bubble Breakup Model in Turbulent Flow
,”
Chem. Eng. Sci.
,
386
, p.
121484
.
26.
Liu
,
Y.
,
Tong
,
T. A.
,
Ozbayoglu
,
E.
,
Yu
,
M.
, and
Upchurch
,
E.
,
2020
, “
An Improved Drift-Flux Correlation for Gas-Liquid Two-Phase Flow in Horizontal and Vertical Upward Inclined Wells
,”
J. Pet. Sci. Eng.
,
195
, p.
107881
.
27.
Liu
,
Y.
,
Upchurch
,
E. R.
, and
Ozbayoglu
,
E. M.
,
2021
, “
Experimental Study of Single Taylor Bubble Rising in Stagnant and Downward Flowing Non-Newtonian Fluids in Inclined Pipes
,”
Energies
,
14
(
3
), p.
578
.
28.
Liu
,
Y.
,
Xie
,
C.
,
Li
,
X.
,
Lu
,
G.
,
Tang
,
L.
, and
Tan
,
X.
,
2020
, “
Optimization Analysis of Structure Parameters of Downhole Vortex Tool Based on CFD and Orthogonal Studies
,”
J. Pet. Sci. Eng.
,
190
, p.
107030
.
29.
Schiller
,
J. L.
, and
Naumann
,
A.
,
1935
, “
A Drag, Coefficient Correlation
,”
Z. Ver. Deutsch Ing.
,
77
, pp.
318
320
.
30.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
31.
Wang
,
Z.
,
Liu
,
X.
,
Luo
,
H.
,
Peng
,
B.
,
Sun
,
X.
,
Liu
,
Y.
, and
Rui
,
Z.
,
2021
, “
Foaming Properties and Foam Structure of Produced Liquid in Alkali/Surfactant/Polymer Flooding Production
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
103005
.
32.
Chen
,
J.
,
Tang
,
Y.
,
Zhang
,
W.
,
Wang
,
Y.
,
Qiu
,
L.
, and
Zhang
,
X.
,
2015
, “
Computational Fluid Dynamic Simulations on Liquid Film Behaviors at Flooding in an Inclined Pipe
,”
Chin. J. Chem. Eng.
,
23
(
9
), pp.
1460
1468
.
33.
Parsi
,
M.
,
Vieira
,
R. E.
,
Torres
,
C. F.
,
Kesana
,
N. R.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Hampel
,
U.
,
2015
, “
On the Effect of Liquid Viscosity on Interfacial Structures Within Churn Flow: Experimental Study Using Wire Mesh Sensor
,”
Chem. Eng. Sci.
,
130
, pp.
221
238
.
34.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
35.
Xie
,
C.
,
Liu
,
Y.
, and
Luo
,
C.
,
2020
, “
Experimental Study on Effective Operating Envelops of Nozzle
to
Mitigate Liquid Loading in Gas Wells
,”
Fluids Engineering Division Summer Meeting
,
July 13–15
, p.
V002T04A002
,
ASME
.
36.
Liu
,
Y.
,
Luo
,
C.
,
Zhang
,
L.
,
Wu
,
P.
,
Zhao
,
Y.
, and
Wang
,
L.
,
2020
, “
Experimental Investigation of the Surfactant Effect on Liquid Removal in Vertical Pipes
,”
J. Pet. Sci. Eng.
,
185
, p.
106660
.
37.
Taitel
,
Y.
,
1986
, “
Stability of Severe Slugging
,”
Int. J. Multiphase Flow
,
12
(
2
), pp.
203
217
.
You do not currently have access to this content.