Abstract

To study the horizontal fire spread characteristics of transformer oil, a series of experiments were carried out on the experimental platform developed. The influence of the initial temperature and the width of the oil pool on the flame propagation, including the propagation speed, flame morphology, and the temperature field distribution of the gas–liquid two phase, was analyzed to reveal the flame propagation characteristics and the oil surface temperature rise law in the process of transformer oil fire propagation. A theoretical model of coupled liquid-phase convective heat transfer and flame radiation heat transfer was established by combining thermodynamic theory to quantitatively calculate the heat transfer process of surface flow in the flame propagation process. The results show that the main flame dominated by diffusion combustion and flash flame dominated by premixed combustion are formed during the spread of transformer oil fire, and the flame spreads forward in a pulsating form. There is a step heating phenomenon during flame spreading forward. The initial temperature and oil pool width affect the flame propagation speed and flame pulsation frequency via changing the heat transfer on the high-temperature surface. Surface flow is mainly driven by surface tension, and the proportion of liquid-phase convective heat transfer to the total heat flow is much larger than flame radiation. Liquid-phase convective heat transfer is the main mode of surface flow heat transfer.

References

1.
Tang
,
F.
,
Hu
,
L.
,
Qiu
,
Z.
, and
Wang
,
Q.
,
2014
, “
A Global Model of Plume Axial Temperature Profile Transition From Axisymmetric to Line-Source Pool Fires in Normal and Reduced Pressures
,”
Fuel
,
130
(
15
), pp.
211
214
.
2.
Zanganeh
,
J.
,
Moghtaderi
,
B.
, and
Ishida
,
H.
,
2013
, “
Combustion and Flame Spread on Fuel-Soaked Porous Solids
,”
Prog. Energy Combust. Sci.
,
39
(
4
), pp.
320
339
.
3.
Fu
,
Y.
,
Gao
,
Z.
,
Ji
,
J.
,
Li
,
K.
, and
Zhang
,
Y.
,
2017
, “
Experimental Study of Flame Spread Over Diesel and Diesel-Wetted Sand Beds
,”
Fuel
,
204
(
15
), pp.
54
62
.
4.
Zhou
,
B.
,
Yoshioka
,
H.
,
Noguchi
,
T.
,
Wang
,
K.
, and
Huang
,
X.
,
2021
, “
Upward Fire Spread Rate Over Real-Scale eps Etics Facades
,”
Fire Technol.
,
57
(
4
), pp.
2007
2024
.
5.
El-Harbawi
,
M.
, and
Al-Mubaddel
,
F.
,
2020
, “
Risk of Fire and Explosion in Electrical Substations Due to the Formation of Flammable Mixtures
,”
Sci. Rep. UK
,
10
, pp.
1
9
.
6.
Wu
,
C.
,
Zhou
,
T.
,
Chen
,
B.
,
Liu
,
Y.
, and
Liang
,
P.
,
2021
, “
Experimental Study on Burning Characteristics of the Large-Scale Transformer Oil Pool Fire With Different Extinguishing Methods
,”
Fire Technol.
,
57
(
1
), pp.
461
481
.
7.
Zhao
,
T.
,
Liu
,
Y. P.
,
Lv
,
F. C.
,
Geng
,
J. H.
, and
Wang
,
P.
,
2018
, “
Study of Cellulose Particle Motion Effect on Impulse Breakdown in Transformer Oil
,”
IEEE Trans. Dielectr. Electr. Insul.
,
25
(
1
), pp.
235
244
.
8.
Zhang
,
B.
,
Zhang
,
J.
,
Huang
,
Y.
,
Wang
,
Q.
, and
Yu
,
Z.
,
2020
, “
Fan M: Burning Process and Fire Characteristics of Transformer Oil: A Study Focusing on the Effects of Oil Type
,”
J. Therm. Anal. Calorim.
,
139
(
3
), pp.
1839
1848
.
9.
Zhao
,
J.
,
Wang
,
S.
,
Zhang
,
J.
,
Zhou
,
R.
, and
Yang
,
R.
,
2020
, “
Experimental Study on the Burning Characteristics of Transformer Oil Pool Fires
,”
Energy Fuels
,
34
(
4
), pp.
4967
4976
.
10.
Mackinven
,
R.
,
Hansel
,
J. G.
, and
Glassman
,
I.
,
1970
, “
Influence of Laboratory Parameters on Flame Spread Across Liquid Fuels
,”
Combust. Sci. Technol.
,
1
(
4
), pp.
293
306
.
11.
Zhou
,
J.
,
Chen
,
G.
,
Li
,
P.
,
Chen
,
B.
,
Wang
,
C.
, and
Lu
,
S.
,
2010
, “
Analysis of Flame Spread Over Aviation Kerosene
,”
Chin. Sci. Bull.
,
55
(
17
), pp.
1822
1827
.
12.
Akita
,
K.
, and
Fujiwara
,
O.
,
1971
, “
Pulsating Flame Spread Along the Surface of Liquid Fuels
,”
Combust. Flame
,
17
(
2
), pp.
268
269
.
13.
Glassman
,
I.
, and
Dryer
,
F. L.
,
1981
, “
Flame Spreading Across Liquid Fuels
,”
Fire Saf. J.
,
3
(
2
), pp.
123
138
.
14.
Degroote
,
E.
, and
Ybarra
,
P.
,
2005
, “
Flame Propagation Over Liquid Alcohols—Part I. Experimental Results
,”
J. Therm. Anal. Calorim.
,
80
(
3
), pp.
541
548
.
15.
Degroote
,
E.
, and
Ybarra
,
P.
,
2005
, “
Flame Propagation Over Liquid Alcohols—Part II. Experimental Results
,”
J. Therm. Anal. Calorim.
,
80
(
3
), pp.
549
553
.
16.
Degroote
,
E.
, and
Ybarra
,
P.
,
2005
, “
Flame Propagation Over Liquid Alcohols—Part III. Experimental Results
,”
J. Therm. Anal. Calorim.
,
80
(
3
), pp.
555
558
.
17.
Miller
,
F. J.
, and
Ross
,
H. D.
,
1992
, “
Further Observations of Flame Spread Over Laboratory-Scale Alcohol Pools
,”
Proc. Combust. Inst.
,
24
(
1
), pp.
1703
1711
.
18.
Gong
,
J.
,
Zhou
,
X.
,
Deng
,
Z.
, and
Yang
,
L.
,
2013
, “
Influences of Low Atmospheric Pressure on Downward Flame Spread Over Thick Pmma Slabs at Different Altitudes
,”
Int. J. Heat Mass Transfer
,
61
(
7
), pp.
191
200
.
19.
Gong
,
J.
,
Yang
,
L.
,
Zhou
,
X.
,
Deng
,
Z.
,
Lei
,
G.
, and
Wang
,
W.
,
2012
, “
Effects of Low Atmospheric Pressure on Combustion Characteristics of Polyethylene and Polymethyl Methacrylate
,”
J. Fire Sci.
,
30
(
3
), pp.
224
239
.
20.
Tang
,
Y.
,
Niu
,
Y.
,
Yin
,
L.
,
Zhou
,
D.
, and
Wang
,
J.
,
2013
, “
Experiment Studies on the Effect of Altitude on Jet a's Flash Point
,”
Fire Mater.
,
37
(
6
), pp.
474
481
.
21.
Li
,
M.
,
Wang
,
C.
,
Yang
,
S.
, and
Zhang
,
J.
,
2017
, “
Precursor Flame Characteristics of Flame Spread Over Aviation Fuel
,”
Appl. Therm. Eng.
,
117
, pp.
178
184
.
22.
Xie
,
W.
,
Zhang
,
Y.
,
Li
,
J.
,
Mao
,
P.
, and
Chen
,
L.
,
2018
, “
Experimental Study on Characteristics of Flame Spread Over Diesel and n-Butanol Pool Fires in Tunnel
,”
Tunnelling Underground Space Technol.
,
79
, pp.
286
292
.
23.
Kong
,
D.
,
Zhang
,
Z.
,
Ping
,
P.
,
He
,
X.
, and
Yang
,
H.
,
2018
, “
Effects of the Initial Fuel Temperature on Burning Behavior of Crude Oil Pool Fire in Ice Cavities
,”
Exp. Heat Transfer
,
31
(
5
), pp.
436
449
.
24.
Ross
,
H. D.
, and
Miller
,
F. J.
,
1998
, “
Flame Spread Across Liquid Pools With Very Low-Speed Opposed or Concurrent Airflow
,”
Symposium on Combustion
,
27
(
2
), pp.
2723
2729
.
25.
Li
,
M.
,
Wang
,
C.
,
Zhang
,
J.
,
Yang
,
S.
,
Fan
,
C.
, and
Liu
,
X.
,
2017
, “
Characteristics of Gas Phase-Controlled Flame Spread Over Liquid Fuels
,”
Appl. Therm. Eng.
,
123
, pp.
403
410
.
26.
Guo
,
J.
,
Lu
,
S.-x.
,
Zhou
,
J.
, and
Wang
,
C.
,
2011
, “
Effect of Initial Temperature on Flame Spread Over Aviation Kerosene
,”
J. Combust. Sci. Technol.
,
17
(
2
), pp.
165
169
.
You do not currently have access to this content.