Abstract

The current paper enhances the methods presented in The American Society of Mechanical Engineers (ASME) Performance Test Code (PTC) 4.1 and 4.4 and proposes an exergy-based loss method (LM) for assessing heat recovery steam generators (HRSGs) performance. First, energy and exergy analyses are applied to one HRSG unit in an existing combined cycle power plant. Then, the calculated exergy destructions are further split into avoidable and unavoidable parts. The sources of inefficiency consist of three energy and exergy loss terms and two exergy destruction terms. The loss terms are associated with the release of the exhaust gas to the atmosphere, Carbon Monoxide formation, and the heat loss from the casing, while the destruction terms represent exergy destruction within the duct burner and the heat transfer unit. The advanced exergy analysis was conducted based on a realistic perspective, considering the integrated operation of both subcomponents. Results reveal that the main source of inefficiency corresponds to the losses associated with the exhaust gas from the stack. Moreover, utilizing semi-ideal heat exchangers can avoid a considerable part (18.9%) of the exergy destruction in the heat transfer unit. The HRSG exergy efficiency is obtained by 71.7% and can be increased to 75.3% in unavoidable operating conditions.

References

1.
Rosen
,
M. A.
,
Tang
,
R.
, and
Dincer
,
I.
,
2004
, “
Effect of Stratification on Energy and Exergy Capacities in Thermal Storage Systems
,”
Int. J. Energy Res.
,
28
(
2
), pp.
177
193
.
2.
Mahto
,
D.
, and
Pal
,
S.
,
2013
, “
Thermodynamics and Thermo-Economic Analysis of Simple Combined Cycle With Inlet Fogging
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
413
424
.
3.
Tsatsaronis
,
G.
,
2007
, “
Definitions and Nomenclature in Exergy Analysis and Exergoeconomics
,”
Energy
,
32
(
4
),
249
253
.
4.
Mohagheghi
,
M.
, and
Shayegan
,
J.
,
2009
, “
Thermodynamic Optimization of Design Variables and Heat Exchangers Layout in HRSGs for CCGT, Using Genetic Algorithm
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
290
299
.
5.
Naderi
,
S.
,
Banifateme
,
M.
,
Pourali
,
O.
,
Behbahaninia
,
A.
,
MacGill
,
I.
, and
Pignatta
,
G.
,
2020
, “
Accurate Capacity Factor Calculation of Waste-to-Energy Power Plants Based on Availability Analysis and Design/Off-Design Performance
,”
J. Clean. Prod.
,
275
, p.
123167
.
6.
Behbahaninia
,
A.
,
Banifateme
,
M.
,
Azmayesh
,
M. H.
,
Naderi
,
S.
, and
Pignatta
,
G.
,
2022
, “
Markov and Monte Carlo Simulation of Waste-to-Energy Power Plants Considering Variable Fuel Analysis and Failure Rates
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062101
.
7.
Butcher
,
C. J.
, and
Reddy
,
B. V.
,
2007
, “
Second Law Analysis of a Waste Heat Recovery Based Power Generation System
,”
Int. J. Heat Mass Transf.
,
50
(
11–12
), pp.
2355
2363
.
8.
Behbahaninia
,
A.
,
Sayadi
,
S.
, and
Soleymani
,
M.
,
2010
, “
Thermoeconomic Optimization of the Pinch Point and Gas-Side Velocity in Heat Recovery Steam Generators
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
224
(
6
), pp.
761
771
.
9.
Sharma
,
M.
, and
Singh
,
O.
,
2016
, “
Exergy Analysis of Dual Pressure HRSG for Different Dead States and Varying Steam Generation States in Gas/Steam Combined Cycle Power Plant
,”
Appl. Therm. Eng.
,
93
, pp.
614
622
.
10.
Sharma
,
M.
, and
Singh
,
O.
,
2017
, “
Exergy Analysis of the Dual Pressure HRSG for Varying Physical Parameters
,”
Appl. Therm. Eng.
,
114
, pp.
993
1001
.
11.
Param
,
H. K.
, and
Jianu
,
O. A.
,
2020
, “
Exergy Analysis of Heat Recovery Steam Generator: Effects of Supplementary Firing and Desuperheater
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p. 050908.
12.
Tsatsaronis
,
G.
, and
Park
,
M.-H.
,
2002
, “
On Avoidable and Unavoidable Exergy Destructions and Investment Costs in Thermal Systems
,”
Energy Convers. Manag.
,
43
(
9–12
), pp.
1259
1270
.
13.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2008
, “
A New Approach to the Exergy Analysis of Absorption Refrigeration Machines
,”
Energy
,
33
(
6
),
890
907
.
14.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2009
, “
Advanced Exergy Analysis for Chemically Reacting Systems—Application to a Simple Open Gas-Turbine System
,”
Int. J. Thermodyn.
,
12
(
3
), pp.
105
111
.
15.
Penkuhn
,
M.
, and
Tsatsaronis
,
G.
,
2017
, “
A Decomposition Method for the Evaluation of Component Interactions in Energy Conversion Systems for Application to Advanced Exergy-Based Analyses
,”
Energy.
,
133
, pp.
388
403
.
16.
Kelly
,
S.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2009
, “
Advanced Exergetic Analysis: Approaches for Splitting the Exergy Destruction Into Endogenous and Exogenous Parts
,”
Energy.
,
34
, pp.
348
391
.
17.
Sayadi
,
S.
,
2020
,
Dynamic Exergy-Based Methods for Improving the Operation of Building Energy Systems
,
Technische Universität Berlin
,
Berlin
.
18.
Petrakopoulou
,
F.
,
Tsatsaronis
,
G.
,
Morosuk
,
T.
, and
Carassai
,
A.
,
2012
, “
Conventional and Advanced Exergetic Analyses Applied to a Combined Cycle Power Plant
,”
Energy
,
41
(
1
), pp.
146
152
.
19.
Boyaghchi
,
F. A.
, and
Molaie
,
H.
,
2015
, “
Investigating the Effect of Duct Burner Fuel Mass Flow Rate on Exergy Destruction of a Real Combined Cycle Power Plant Components Based on Advanced Exergy Analysis
,”
Energy Convers. Manag.
,
103
, pp.
827
835
.
20.
ASME PTC
,
2013
,
PTC 4: Fired Steam Generators
,
ASME
,
New York
.
21.
ASME PTC
,
1981
,
PTC 4.4: Heat Recovery Steam Generators
,
ASME
,
New York
.
22.
ASME PTC
,
2008
,
PTC 4.4: Heat Recovery Steam Generators
,
ASME
,
New York
.
23.
Terhan
,
M.
, and
Comakli
,
K.
,
2017
, “
Energy and Exergy Analyses of Natural Gas-Fired Boilers in a District Heating System
,”
Appl. Therm. Eng.
,
121
, pp.
380
387
.
24.
Sayadi
,
S.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2019
, “
Dynamic Exergetic Assessment of Heating and Cooling Systems in a Complex Building
,”
Energy Convers. Manag.
,
183
, pp.
561
576
.
25.
Azami
,
S.
,
Taheri
,
M.
,
Pourali
,
O.
, and
Torabi
,
F.
,
2018
, “
Energy and Exergy Analyses of a Mass-Fired Boiler for a Proposed Waste-to-Energy Power Plant in Tehran
,”
Appl. Therm. Eng.
,
140
, pp.
520
530
.
26.
Behbahaninia
,
A.
,
Ramezani
,
S.
, and
Lotfi Hejrandoost
,
M.
,
2017
, “
A Loss Method for Exergy Auditing of Steam Boilers
,”
Energy
,
140
, pp.
253
260
.
27.
Banifateme
,
M.
,
Behbahaninia
,
A.
, and
Sayadi
,
S.
,
2021
, “
Development of a Loss Method for Energy and Exergy Audit of Condensing Hot Water Boilers
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p. 052104.
28.
Ameri
,
M.
,
Ahmadi
,
P.
, and
Khanmohammadi
,
S.
,
2008
, “
Exergy Analysis of a 420 MW Combined Cycle Power Plant
,”
Int. J. Energy Res.
,
32
(
2
), pp.
175
183
.
29.
Ameri
,
M.
, and
Ahmadi
,
P.
,
2007
, “
The Study of Ambient Temperature Effects on Exergy Losses of a Heat Recovery Steam Generator
,”
Challenges Power Eng. Environ.
, pp.
55
60
.
30.
Aliyu
,
M.
,
AlQudaihi
,
A. B.
,
Said
,
S. A. M.
, and
Habib
,
M. A.
,
2020
, “
Energy, Exergy and Parametric Analysis of a Combined Cycle Power Plant
,”
Therm. Sci. Eng. Prog.
,
15
, p.
100450
.
31.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2013
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, National Institute of Standards and Technology
.
32.
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
1997
,
1997 ASHRAE Handbook: Fundamentals
,
ASHRAE
,
Atlanta
.
33.
McBride
,
B. J.
,
2002
,
NASA Glenn coefficients for calculating thermodynamic properties of individual species
,
National Aeronautics and Space Administration, John H. Glenn Research Center at Lewis Field
,
Cleveland, OH
.
34.
ASME PTC
,
2017
,
PTC 34: Waste Combustors with Energy Recovery
,
ASME
,
New York
.
35.
Behbahaninia
,
A.
,
Banifateme
,
M.
, and
Azami
,
S.
,
2019
,
Audit. An Overv.
,
J.
Rymill
, and
T.
Cavenagh
, eds.,
Nova Science Publishers, Incorporated
,
New York
.
36.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1995
,
Thermal Design and Optimization
,
Wiley
,
New York
.
37.
Szargut
,
J.
,
2005
,
Exergy Method: Technical and Ecological Applications
, Vol.
18
,
WIT Press
,
Southampton, UK
.
38.
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2008
, “
A General Exergy-Based Method for Combining a Cost Analysis With an Environmental Impact Analysis: Part I—Theoretical Development
,”
Energy Syst. Anal. Thermodyn. Sustain. Sustain. Prod. Process., ASMEDC
,
8
, pp.
453
462
.
You do not currently have access to this content.