Abstract

Aqueous lithium bromide absorption refrigeration systems have been studied in recent years and their advantages such as environmental safety and utilization of low-grade energy have been proved. Research on improving their performance has been increasing lately. In this paper, single effect and parallel flow double-effect aqueous lithium bromide absorption refrigeration systems have been studied. Mass, energy, entropy, and exergy balances have been used to model the absorption refrigeration systems. Parametric studies have been done to investigate the effects of cooling load, evaporator exit temperature, condenser exit temperature, generator vapor exit temperature, absorber exit temperature, and solution energy exchanger effectiveness on the performance of the system. The analyses show the coefficient of performance, and exergetic efficiency of double-effect absorption refrigeration is higher than those of single-effect refrigeration. The effect of other parameters on the performance of both single- and double-effect systems has been described in detail in this article.

References

1.
Nikbakhti
,
R.
,
Wang
,
X.
,
Hussein
,
A. K.
, and
Iranmanesh
,
A.
,
2020
, “
Absorption Cooling Systems—Review of Various Techniques for Energy Performance Enhancement
,”
Alexandria Eng. J.
,
59
(
2
), pp.
707
738
.
2.
Anisur
,
M.
,
Mahfuz
,
M.
,
Kibria
,
M.
,
Saidur
,
R.
,
Metselaar
,
I.
, and
Mahlia
,
T.
,
2013
, “
Curbing Global Warming With Phase Change Materials for Energy Storage
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
23
30
.
3.
Hassan
,
H.
, and
Mohamad
,
A.
,
2012
, “
A Review on Solar Cold Production Through Absorption Technology
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5331
5348
.
4.
Meraj
,
M.
,
Khan
,
M. E.
, and
Azhar
,
M.
,
2020
, “
Performance Analyses of Photovoltaic Thermal Integrated Concentrator Collector Combined With Single Effect Absorption Cooling Cycle: Constant Flow Rate Mode
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121305
.
5.
Iqbal
,
A. A.
, and
Al-Alili
,
A.
,
2018
, “
Review of Solar Cooling Technologies in the MENA Region
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
010801
.
6.
Muneer
,
T.
, and
Uppal
,
A. H.
,
1985
, “
Modelling and Simulation of a Solar Absorption Cooling System
Appl. Energy
,
19
(
3
), pp.
209
229
.
7.
Chowdhury
,
M. T.
, and
Mokheimer
,
E. M. A.
,
2019
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
.
8.
Pandya
,
B.
,
Kumar
,
V.
,
Patel
,
J.
, and
Matawala
,
V. K.
,
2018
, “
Optimum Heat Source Temperature and Performance Comparison of LiCl–H2O and LiBr–H2O Type Solar Cooling System
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051204
.
9.
Gandhidasan
,
P.
,
1990
, “
Analysis of a Solar Space Cooling System Using Liquid Desiccants
,”
ASME J. Energy Resour. Technol.
,
112
(
4
), pp.
246
250
.
10.
Tugcu
,
A.
, and
Arslan
,
O.
,
2017
, “
Optimization of Geothermal Energy Aided Absorption Refrigeration System—GAARS: A Novel ANN-Based Approach
,”
Geothermics
,
65
, pp.
210
221
.
11.
Ceyhun
,
Y.
, and
Onder
,
K.
,
2018
, “
Performance Analysis and Optimization of a Hydrogen Liquefaction System Assisted by Geothermal Absorption Precooling Refrigeration Cycle
,”
Int. J. Hydrogen Energy
,
43
(
44
), pp.
20203
20213
.
12.
Marcin
,
S.
, and
Piotr
,
Ż
,
2018
, “
Thermodynamic and Economic Analysis of the Production of Electricity, Heat, and Cold in the Combined Heat and Power Unit With the Absorption Chillers
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052002
.
13.
Ansari
,
K. A.
,
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2021
, “
Exergy Analysis of Single-Effect Vapor Absorption System Using Design Parameters
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062105
.
14.
Somers
,
C.
,
Mortazavi
,
A.
,
Hwang
,
Y.
,
Radermacher
,
R.
,
Rodgers
,
P.
, and
Al-Hashimi
,
S.
,
2011
, “
Modeling Water/Lithium Bromide Absorption Chillers in ASPEN Plus
,”
Appl. Energy
,
88
(
11
), pp.
4197
4205
.
15.
Garimella
,
S.
,
1997
, “
Absorption Heat Pump Performance Improvement Through Ground Coupling
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
242
249
.
16.
Fan
,
Y.
,
Luo
,
L.
, and
Souyri
,
B.
,
2007
, “
Review of Solar Sorption Refrigeration Technologies: Development and Applications
,”
Renewable Sustainable Energy Rev.
,
11
(
8
), pp.
1758
1775
.
17.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2019
, “
First and Second Law Analyses of Double Effect Parallel and Series Flow Direct Fired Absorption Cycles for Optimum Operating Parameters
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
124501
.
18.
Gomri
,
R.
, and
Hakimi
,
R.
,
2008
, “
Second law Analysis of Double Effect Vapor Absorption Cooler System
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3343
3348
.
19.
Arora
,
A.
, and
Kaushik
,
S.
,
2009
, “
Theoretical Analysis of LiBr/H2O Absorption Refrigeration Systems
,”
Int. J. Energy Res.
,
33
(
15
), pp.
1321
1340
.
20.
Herold
,
K. E.
,
Radermacher
,
R.
, and
Klein
,
S. A.
,
2016
,
Absorption Chillers and Heat Pumps
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
21.
Arun
,
M.
,
Maiya
,
M.
, and
Murthy
,
S. S.
,
2001
, “
Performance Comparison of Double-Effect Parallel-Flow and Series Flow Water–Lithium Bromide Absorption Systems
,”
Appl. Therm. Eng.
,
21
(
12
), pp.
1273
1279
.
22.
Arun
,
M.
,
Maiya
,
M.
, and
Murthy
,
S. S.
,
2000
, “
Equilibrium low Pressure Generator Temperatures for Double-Effect Series Flow Absorption Refrigeration Systems
,”
Appl. Therm. Eng.
,
20
(
3
), pp.
227
242
.
23.
The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
,
2017
, Ashrae Handbook—Fundamentals (SI), ISBN(s): 9781939200587
24.
Pátek
,
J.
, and
Klomfar
,
J.
,
2006
, “
A Computationally Effective Formulation of the Thermodynamic Properties of LiBr–H2O Solutions From 273 to 500 K Over Full Composition Range
,”
Int. J. Refrig.
,
29
(
4
), pp.
566
578
.
You do not currently have access to this content.