Abstract

The higher heating value (HHV) of 84 coal samples including hard coals, lignites, and anthracites from Russia, Colombia, South Africa, Turkey, and Ukrania was predicted by multilinear regression (MLR) method based on proximate and ultimate analysis data. The prediction accuracy of the correlation equations was tested by Analysis of variance method. The significance of the predictive parameters was studied considering R2, adj. R2, standard error, F-values, and p-values. Although relationships between HHV and any of the single parameters were almost irregular, MLR provided a reasonable correlation. It was also found out that ultimate analysis parameters (C, H, and N) played a more significant role than the proximate analysis parameters (fixed carbon (FC), volatile matter (VM), and ash) in predicting the HHV. Particularly, FC content was seen inefficient parameter when elemental C content existed in the regression equation. The elimination of proximate analysis parameters from the equation made the elemental C content the most dominant parameter with by-far very low p-values. For hardcoals, adj. R2 of the equation with three parameters (HHV = 87.801(C) + 132.207(H) − 77.929(S)) was slightly higher than that of HHV = 11.421(Ash) + 22.135(VM) + 19.154(FC) + 70.764(C) + 7.552(H) − 53.782(S).

References

1.
Ghugare
,
S. B.
, and
Tambe
,
S. S.
,
2017
, “
Genetic Programming Based High Performing Correlations for Prediction of Higher Heating Value of Coals of Different Ranks and From Diverse Geographies
,”
J. Energy Inst.
,
90
(
3
), pp.
476
484
.
2.
Yerel
,
S.
, and
Ersen
,
T.
,
2013
, “
Prediction of the Calorific Value of Coal Deposit Using Linear Regression Analysis
,”
Energy Sources Part A
,
35
(
10
), pp.
976
980
.
3.
Özyuğuran
,
A.
,
Aktürk
,
A.
, and
Yaman
,
S.
,
2018
, “
Optimal Use of Condensed Parameters of Ultimate Analysis to Predict the Calorific Value of Biomass
,”
Fuel
,
214
, pp.
640
646
.
4.
Özyuğuran
,
A.
,
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Which One Does Better Predict the Heating Value of Biomass?—Dry Based or As-Received Based Proximate Analysis Results?
,”
ASME J. Energy Res. Technol.
,
141
(
11
), p.
112202
.
5.
Akhtar
,
J.
,
Sheikh
,
N.
, and
Munir
,
S.
,
2017
, “
Linear Regression-Based Correlations for Estimation of High Heating Values of Pakistani Lignite Coals
,”
Energy Sources Part A
,
39
(
10
), pp.
1063
1070
.
6.
Begum
,
N.
,
Chakravarty
,
D.
, and
Das
,
B. S.
,
2019
, “
Estimation of Gross Calorific Value of Bituminous Coal Using Various Coal Properties and Reflectance Spectra
,”
Int. J. Coal Prep. Util.
(published online)—
7.
Akkaya
,
A. V.
,
2020
, “
Coal Higher Heating Value Prediction Using Constituents of Proximate Analysis: Gaussian Process Regression Model
,”
Int. J. Coal Prep. Util.
(published online)-
8.
Kavsek
,
D.
,
Bednarova
,
A.
,
Biro
,
M.
,
Kranvogl
,
R.
,
Voncina
,
D. B.
, and
Beinrohr
,
E.
,
2013
, “
Characterization of Slovenian Coal and Estimation of Coal Heating Value Based on Proximate Analysis Using Regression and Artificial Neural Networks
,”
Cent. Eur. J. Chem.
,
11
(
9
), pp.
1481
1491
.
9.
Qian
,
X.
,
Lee
,
S.
,
Soto
,
A.
, and
Chen
,
G.
,
2018
, “
Regression Model to Predict the Higher Heating Value of Poultry Waste From Proximate Analysis
,”
Resources
,
7
(
39
), pp.
1
14
.
10.
Kumari
,
P.
,
Singh
,
A. K.
,
Wood
,
D. A.
, and
Hazra
,
B.
,
2019
, “
Predictions of Gross Calorific Value of Indian Coals From Their Moisture and Ash Content
,”
J. Geol. Soc. India
,
93
(
4
), pp.
437
442
.
11.
Matin
,
S. S.
, and
Chelgani
,
S. C.
,
2016
, “
Estimation of Coal Gross Calorific Value Based on Various Analyses by Random Forest Method
,”
Fuel
,
177
, pp.
274
278
.
12.
Yin
,
C. Y.
,
2011
, “
Prediction of Higher Heating Values of Biomass From Proximate and Ultimate Analyses
,”
Fuel
,
90
(
3
), pp.
1128
1132
.
13.
Xing
,
J.
,
Luo
,
K.
,
Wang
,
H.
,
Gao
,
Z.
, and
Fan
,
J.
,
2019
, “
A Comprehensive Study on Estimating Higher Heating Value of Biomass From Proximate and Ultimate Analysis With Machine Learning Approaches
,”
Energy
,
188
, p.
116077
.
14.
Mathews
,
J. P.
,
Krishnamoorthy
,
V.
,
Louw
,
E.
,
Tchapda
,
A. H. N.
,
Castro-Marcano
,
F.
,
Karri
,
V.
,
Alexis
,
D. A.
, and
Mitchell
,
G. D.
,
2014
, “
A Review of the Correlations of Coal Properties With Elemental Composition
,”
Fuel Process. Technol.
,
121
, pp.
104
113
.
15.
Maksimuk
,
Y.
,
Antonava
,
Z.
,
Krouk
,
V.
,
Korsakova
,
A.
, and
Kursevich
,
V.
,
2020
, “
Prediction of Higher Heating Value Based on Elemental Composition for Lignin and Other Fuels
,”
Fuel
,
263
, p.
116727
.
16.
Erik
,
N. Y.
, and
Yilmaz
,
I.
,
2011
, “
On the Use of Conventional and Soft Computing Models for Prediction of Gross Calorific Value (GCV) of Coal
,”
Int. J. Coal Prep. Util.
,
31
(
1
), pp.
32
59
.
17.
Akkaya
,
A. V.
,
2013
, “
Predicting Coal Heating Values Using Proximate Analysis via a Neural Network Approach
,”
Energy Sources Part A
,
35
(
3
), pp.
253
260
.
18.
Uzun
,
H.
,
Yıldız
,
Z.
,
Goldfarb
,
J. L.
, and
Ceylan
,
S.
,
2017
, “
Improved Prediction of Higher Heating Value of Biomass Using an Artificial Neural Network Model Based on Proximate Analysis
,”
Bioresour. Technol.
,
234
, pp.
122
130
.
19.
Wen
,
X.
,
Jian
,
S.
, and
Wang
,
J.
,
2017
, “
Prediction Models of Calorific Value of Coal Based on Wavelet Neural Networks
,”
Fuel
,
199
, pp.
512
522
.
20.
Ghosh
,
S.
,
Chatterjee
,
R.
, and
Shanker
,
P.
,
2016
, “
Prediction of Coal Proximate Parameters and Useful Heat Value, of Coal From Well Logs of the Bishrampur Coalfield, India, Using Regression and Artificial Neural Network Modeling
,”
Energy Fuels
,
30
(
9
), pp.
7055
7064
.
21.
Bui
,
H. B.
,
Nguyen
,
H.
,
Choi
,
Y.
,
Bui
,
X. N.
,
Nguyen-Thoi
,
T.
, and
Zandi
,
Y.
,
2019
, “
A Novel Artificial Intelligence Technique to Estimate the Gross Calorific Value of Coal Based on Meta-Heuristic and Support Vector Regression Algorithms
,”
Appl. Sci.
,
9
(
22
), p.
4868
.
22.
Feng
,
Q.
,
Zhang
,
J.
,
Zhang
,
X.
, and
Wen
,
S.
,
2015
, “
Proximate Analysis Based Prediction of Gross Calorific Value of Coals: A Comparison of Support Vector Machine, Alternating Conditional Expectation and Artificial Neural Network
,”
Fuel Process. Technol.
,
129
, pp.
120
129
.
23.
Qi
,
M.
,
Luo
,
H.
,
Wei
,
P.
, and
Fu
,
Z.
,
2019
, “
Estimation of Low Calorific Value of Blended Coals Based on Support Vector Regression and Sensitivity Analysis in Coal-Fired Power Plants
,”
Fuel
,
236
, pp.
1400
1407
.
24.
Wood
,
D. A.
,
2019
, “
Sensitivity Analysis and Optimization Capabilities of the Transparent Open-Box Learning Network in Predicting Coal Gross Calorific Value From Underlying Compositional Variables
,”
Model. Earth Syst. Environ.
,
5
(
3
), pp.
753
766
.
25.
Boumanchar
,
I.
,
Chhiti
,
Y.
,
M’Hamdi Alaoui
,
F. E.
,
Sahibed-Dine
,
A.
,
Bentiss
,
F.
,
Jama
,
C.
, and
Bensitel
,
M.
, “
Multiple Regression and Genetic Programming for Coal Higher Heating Value Estimation
,”
Int. J. Green Energy
,
15
(
14–15
), pp.
958
964
.
26.
Xu
,
L.
,
Cheng
,
Y.
,
Yin
,
R.
, and
Zhang
,
Q.
,
2015
, “
Comparative Study of Regression Modeling Methods for Online Coal Calorific Value Prediction From Flame Radiation Features
,”
Fuel
,
142
, pp.
164
172
.
27.
Li
,
H.
,
Yang
,
S.
,
Zhao
,
W.
,
Xu
,
Z.
,
Zhao
,
S.
, and
Liu
,
X.
,
2016
, “
Prediction of the Physicochemical Properties of Woody Biomass Using Linear Prediction and Artificial Neural Networks
,”
Energy Sources Part A
,
38
(
11
), pp.
1569
1573
.
28.
Chelgani
,
S. C.
,
Hart
,
B.
,
Grady
,
W. C.
, and
Hower
,
J. C.
,
2011
, “
Study Relationship Between Inorganic and Organic Coal Analysis With Gross Calorific Value by Multiple Regression and ANFIS
,”
Int. J. Coal Prep. Util.
,
31
(
1
), pp.
9
19
.
29.
Sajdak
,
M.
, and
Slowik
,
K.
,
2014
, “
Use of Plastic Waste as a Fuel in the Co-prolysis of Biomass: Part II. Variance Analysis of the Co-pyrolysis Process
,”
J. Anal. Appl. Pyrolysis
,
109
, pp.
152
158
.
30.
Anupam
,
K.
,
Sharma
,
A. K.
,
Lal
,
P. S.
,
Dutta
,
S.
, and
Maity
,
S.
,
2016
, “
Preparation, Characterization and Optimization for Upgrading Leucaena Leucocephala Bark to Biochar Fuel With High Energy Yielding
,”
Energy
,
106
, pp.
743
756
.
31.
Mante
,
O. D.
,
Agblevor
,
F. A.
, and
McClung
,
R.
,
2013
, “
A Study on Catalytic Pyrolysis of Biomass With Y-Zeolite Based FCC Catalyst Using Response Surface Methodology
,”
Fuel
,
108
, pp.
451
464
.
32.
Buratti
,
C.
,
Barbanera
,
M.
,
Lascaro
,
E.
, and
Cotana
,
F.
,
2018
, “
Optimization of Torrefaction Conditions of Coffee Industry Residues Using Desirability Function Approach
,”
Waste Manage.
,
73
, pp.
523
534
.
33.
Mante
,
O. D.
, and
Agblevor
,
F. A.
,
2011
, “
Parametric Study on the Pyrolysis of Manure and Wood Shavings
,”
Biomass Bioenergy
,
35
(
10
), pp.
4417
4425
.
34.
Mata-Sanchez
,
J.
,
Perez-Jimenez
,
J. A.
,
Diaz-Villanueva
,
M. J.
,
Serrano
,
A.
,
Nunez-Sanchez
,
N.
, and
Lopez-Gimenez
,
F. J.
,
2013
, “
Statistical Evaluation of Quality Parameters of Olive Stone to Predict Its Heating Value
,”
Fuel
,
113
, pp.
750
756
.
35.
Shi
,
H.
,
Mahinpey
,
N.
,
Aqsha
,
A.
, and
Silbermann
,
R.
,
2016
, “
Characterization, Thermochemical Conversion Studies, and Heating Value Modeling of Municipal Solid Waste
,”
Waste Manage.
,
48
, pp.
34
47
.
36.
Lela
,
B.
,
Barisic
,
M.
, and
Nizetic
,
S.
,
2016
, “
Cardboard/Sawdust Briquettes as Biomass Fuel: Physical–Mechanical and Thermal Characteristics
,”
Waste Manage.
,
47
, pp.
236
245
.
37.
Soka
,
O.
, and
Oyekola
,
O.
,
2020
, “
A Feasibility Assessment of the Production of Char Using the Slow Pyrolysis Process
,”
Heliyon
,
6
(
7
), p.
04346
.
38.
Zheng
,
X.
,
Jiang
,
Z.
,
Ying
,
Z.
,
Song
,
J.
,
Chen
,
W.
, and
Wang
,
B.
,
2020
, “
Role of Feedstock Properties and Hydrothermal Carbonization Conditions on Fuel Properties of Sewage Sludge-Derived Hydrochar Using Multiple Linear Regression Technique
,”
Fuel
,
271
, p.
117609
.
39.
Behera
,
D.
,
Nandi
,
B. K.
, and
Bhattacharya
,
S.
,
2020
, “
Studies on Combustion Characteristics of Density by Density Analyzed Coal
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012301
.
40.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Unburnt Carbon From Oxygen-Enriched Combustion of Low Quality Fuels at Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012101
.
41.
Ahmaruzzaman
,
M.
,
2008
, “
Proximate Analyses and Predicting HHV of Chars Obtained From Cocracking of Petroleum Vacuum Residue With Coal, Plastics and Biomass
,”
Bioresour. Technol.
,
99
(
11
), pp.
5043
5050
.
42.
Jagodzinska
,
K.
,
Czerep
,
M.
,
Kudlek
,
E.
,
Wnukowski
,
M.
,
Pronobis
,
M.
, and
Yang
,
W.
,
2020
, “
Torrefaction of Agricultural Residues: Effect of Temperature and Residence Time on the Process Products Properties
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070912
.
43.
Yao
,
F.
, and
Wang
,
H.
,
2019
, “
Theoretical Analysis on the Constitution of Calorific Values of Biomass Fuels
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022207
.
44.
Choi
,
H. L.
,
Sudiarto
,
S. I. A.
, and
Renggaman
,
A.
,
2014
, “
Prediction of Livestock Manure and Mixture Higher Heating Value Based on Fundamental Analysis
,”
Fuel
,
116
, pp.
772
780
.
You do not currently have access to this content.