Abstract

The increasing environmental limits and carbon emissions taxes are substantial to develop the efficient systems for offering an effective energy utilization. This study proposed a new biomass-based gasification-assisted configuration for the renewable hydrogen production system offering efficient energy utilization. A multi-effect desalination system is employed for water desalination which is converted to steam and fed to the entrained flow gasifier. The integrated heat recovery steam generator gains the additional heat from the syngas to generate steam using fresh water from the desalination unit. The produced hydrogen is supplied to the multistage compression unit that stores hydrogen at high pressure. Industrial aspen plus software V9 version is employed for the simulation under the RK-SOAVE property method. The production of hydrogen before the water gas shift reactor is 129.5 mol/s and after the water gas shift reactor is found to be 171 mol/s. The thermodynamic performance of the biomass energy-assisted system is determined through overall energetic and exergetic efficiencies that are revealed to be 40.86% and 38.63%. Numerous sensitivity studies are performed to explore the performance of the designed system and presented and discussed.

References

1.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2020
,
Exergy: Energy, Environment and Sustainable Development
, 3rd ed.,
Elsevier
,
Amsterdam, The Netherlands
.
2.
Chiari
,
L.
, and
Zecca
,
A.
,
2011
, “
Constraints of Fossil Fuels Depletion on Global Warming Projections
,”
Energy Policy
,
39
(
9
), pp.
5026
5034
.
3.
Wang
,
W.
,
Herreros
,
J. M.
,
Tsolakis
,
A.
, and
York
,
A. P. E.
,
2013
, “
Ammonia as Hydrogen Carrier for Transportation; Investigation of the Ammonia Exhaust Gas Fuel Reforming
,”
Int. J. Hydrogen Energy
,
38
(
23
), pp.
9907
9917
.
4.
Mondal
,
P.
, and
Dalai
,
A. K.
,
2017
,
Sustainable Utilization of Natural Resources
,
Taylor & Francis Group, LLC
.
5.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Analysis and Assessment of a Hydrogen Production Plant Consisting of Coal Gasification, Thermochemical Water Decomposition and Hydrogen Compression Systems
,”
Energy Convers. Manag.
,
157
, pp.
600
618
.
6.
Ishaq
,
H.
, and
Dincer
,
I.
,
2020
, “
Development and Multi-Objective Optimization of a Newly Proposed Industrial Heat Recovery Based Cascaded Hydrogen and Ammonia Synthesis System
,”
Sci. Total Environ.
,
743
, p.
140671
.
7.
Lonngren
,
K. E.
, and
Bai
,
E.-W.
,
2008
, “
On the Global Warming Problem Due to Carbon Dioxide
,”
Energy Policy
,
36
(
4
), pp.
1567
1568
.
8.
Bozoglan
,
E.
,
Midilli
,
A.
, and
Hepbasli
,
A.
,
2012
, “
Sustainable Assessment of Solar Hydrogen Production Techniques
,”
Energy
,
46
(
1
), pp.
85
93
.
9.
Olateju
,
B.
, and
Kumar
,
A.
,
2011
, “
Hydrogen Production From Wind Energy in Western Canada for Upgrading Bitumen From Oil Sands
,”
Energy
,
36
(
11
), pp.
6326
6339
.
10.
Ghazvini
,
M.
,
Sadeghzadeh
,
M.
,
Ahmadi
,
M. H.
,
Moosavi
,
S.
, and
Pourfayaz
,
F.
,
2019
, “
Geothermal Energy Use in Hydrogen Production: A Review
,”
Int. J. Energy Res.
,
43
, pp.
7823
7851
.
11.
Shayan
,
E.
,
Zare
,
V.
, and
Mirzaee
,
I.
,
2018
, “
Hydrogen Production From Biomass Gasification; a Theoretical Comparison of Using Different Gasification Agents
,”
Energy Convers. Manag.
,
159
, pp.
30
41
.
12.
Gupta
,
R. B.
,
2009
,
Hydrogen Fuel
,
Taylor & Francis Group, LLC
,
London, New York
.
13.
Singh Siwal
,
S.
,
Zhang
,
Q.
,
Sun
,
C.
,
Thakur
,
S.
,
Kumar Gupta
,
V.
, and
Kumar Thakur
,
V.
,
2020
, “
Energy Production From Steam Gasification Processes and Parameters That Contemplate in Biomass Gasifier—A Review
,”
Bioresour. Technol.
,
297
, p.
122481
.
14.
Chang
,
A. C. C.
,
Chang
,
H. F.
,
Lin
,
F. J.
,
Lin
,
K. H.
, and
Chen
,
C. H.
,
2011
, “
Biomass Gasification for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
36
(
21
), pp.
14252
14260
.
15.
Gao
,
N.
,
Li
,
A.
, and
Quan
,
C.
,
2009
, “
A Novel Reforming Method for Hydrogen Production From Biomass Steam Gasification
,”
Bioresour. Technol.
,
100
(
18
), pp.
4271
4277
.
16.
Doranehgard
,
M. H.
,
Samadyar
,
H.
,
Mesbah
,
M.
,
Haratipour
,
P.
, and
Samiezade
,
S.
,
2017
, “
High-Purity Hydrogen Production With in Situ CO2 Capture Based on Biomass Gasification
,”
Fuel
,
202
, pp.
29
35
.
17.
Yao
,
D.
,
Hu
,
Q.
,
Wang
,
D.
,
Yang
,
H.
,
Wu
,
C.
,
Wang
,
X.
, and
Chen
,
H.
,
2016
, “
Hydrogen Production From Biomass Gasification Using Biochar as a Catalyst/Support
,”
Bioresour. Technol.
,
216
, pp.
159
164
.
18.
Ishaq
,
H.
,
Islam
,
S.
,
Dincer
,
I.
, and
Yilbas
,
B. S.
,
2020
, “
Development and Performance Investigation of a Biomass Gasification Based Integrated System With Thermoelectric Generators
,”
J. Clean Prod.
,
256
, p.
120625
.
19.
Wang
,
J.
, and
Mao
,
T.
,
2005
, “
Cost Allocation and Sensitivity Analysis of Multi-Products From Biomass Gasification Combined Cooling Heating and Power System Based on the Exergoeconomic Methodology
,”
Energy Convers. Manag.
,
105
, pp.
230
239
.
20.
Dincer
,
I.
, and
Acar
,
C.
,
2015
, “
A Review on Clean Energy Solutions for Better Sustainability
,”
Int. J. Energy Res.
,
39
(
5
), pp.
585
606
.
21.
El-Dessouky
,
H. T.
, and
Ettouney
,
H. M.
,
2002
,
Fundamentals of Salt Water Desalination
,
Elsevier
,
New York
.
22.
Ud Din
,
Z.
, and
Zainal
,
Z. A.
,
2016
, “
Biomass Integrated Gasification–SOFC Systems: Technology Overview
,”
Renew. Sustain. Energy Rev.
,
53
, pp.
1356
1376
.
23.
Yan
,
L.
,
Yue
,
G.
, and
He
,
B.
,
2015
, “
Exergy Analysis of a Coal/Biomass Co-Hydrogasification Based Chemical Looping Power Generation System
,”
Energy
,
93
, pp.
1778
1787
.
24.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2015
,
Thermodynamics: An Engineering Approach
, 8th ed.,
Mc-Graw-Hill
,
New York
.
25.
Atif
,
M.
, and
Al-Sulaiman
,
F. A.
,
2018
, “
Energy and Exergy Analyses of Recompression Brayton Cycles Integrated with a Solar Power Tower through a Two-Tank Thermal Storage System
,”
J. Energy Eng.
,
144
.
26.
Augustine
,
A. S.
,
Ma
,
Y. H.
, and
Kazantzis
,
N. K.
,
2011
, “
High Pressure Palladium Membrane Reactor for The High Temperature Water–Gas Shift Reaction
,”
Int. J. Hydrogen Energy
,
36
, pp.
5350
5360
.
You do not currently have access to this content.