Abstract

Although using a multi-stage rotor of Savonius vertical-axis wind turbine enhances the self-starting ability, it reduces the power coefficient. To improve power coefficient, the influence of varying the stage aspect ratio is investigated. Therefore, two-, three-, and four-stage Savonius rotors at stage aspect ratios ranging from 0.5 to 1.5 with increments of 0.25 are considered. To determine performance parameters such as coefficients of torque, power, and thrust, a comprehensive three-dimensional unsteady incompressible turbulent flow model using Reynolds-averaged Navier–Stokes (RANS) equations along with a k–ω shear stress transport turbulence model is developed. The developed numerical model is validated utilizing the available experimental results. Moreover, a novel assessment technique relying on flow field characteristics such as pressure distribution in conjunction with streamlines around the proposed multi-stage Savonius rotor with various stage aspect ratios is carried out. The contribution of each stage on the performance of the whole rotor is computed and presented. The findings of the current study illustrate that utilizing a multi-stage rotor with stage aspect ratio equal to or greater than 1.0 significantly enhances the output power. By rising the stage aspect ratio within the range of 0.5–1.5, the peak coefficient of power boosts from 0.163 to 0.213 for a two-stage rotor and from 0.183 to 0.23 for a four-stage rotor. In addition, three-stage rotors with stage aspect ratio ranging from 0.5 to 1.5 show increased average static coefficient of torque from 0.196 to 0.272 with positive values at whole rotation angles. This improves the self-starting abilities of the multi-stage rotor and makes it suitable in areas where the wind is intermittent and very low. Furthermore, raising the stage aspect ratio from 0.5 to 1.5 significantly mitigates the oscillations of both torque and thrust coefficients throughout the entire cycle for all multi-stages. This lowers the mechanical vibrations and noise emission during operation conditions. Accordingly, multi-stage Savonius rotors with stage aspect ratio equal to or greater than 1.0 are highly recommended for practical applications.

References

1.
Nižetić
,
S.
,
Djilali
,
N.
,
Papadopoulos
,
A.
, and
Rodrigues
,
J. J.
,
2019
, “
Smart Technologies for Promotion of Energy Efficiency, Utilization of Sustainable Resources and Waste Management
,”
J. Cleaner Prod.
,
231
(
26
), pp.
565
591
.
2.
IEA
,
2020
,
Global Energy Review 2020
,
IEA
,
Paris, France
.
3.
Renewables 2020: Global Status Report. REN21
,”
2020
.
4.
Global Wind Energy Council (GWEC)
, April 2020, “
Global Wind Report 2019
.”
5.
Vargas
,
S. A.
,
Esteves
,
G. R. T.
,
Maçaira
,
P. M.
,
Bastos
,
B. Q.
,
Oliveira
,
F. L. C.
, and
Souza
,
R. C.
,
2019
, “
Wind Power Generation: A Review and a Research Agenda
,”
J. Cleaner Prod.
,
218
(
13
), pp.
850
870
.
6.
Uddin
,
M. S.
, and
Kumar
,
S.
,
2014
, “
Energy, Emissions and Environmental Impact Analysis of Wind Turbine Using Life Cycle Assessment Technique
,”
J. Cleaner Prod.
,
69
(
8
), pp.
153
164
.
7.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
050801
.
8.
Kumar
,
R.
,
Raahemifar
,
K.
, and
Fung
,
A. S.
,
2018
, “
A Critical Review of Vertical Axis Wind Turbines for Urban Applications
,”
Renew. Sustain. Energy Rev.
,
89
(
7
), pp.
281
291
.
9.
Howell
,
R.
,
Qin
,
N.
,
Edwards
,
J.
, and
Durrani
,
N.
,
2010
, “
Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine
,”
Renew. Energy
,
35
(
2
), pp.
412
422
.
10.
Kouloumpis
,
V.
,
Sobolewski
,
R. A.
, and
Yan
,
X.
,
2020
, “
Performance and Life Cycle Assessment of a Small Scale Vertical Axis Wind Turbine
,”
J. Cleaner Prod.
,
247
(
6
), p.
119520
.
11.
Masdari
,
M.
,
Tahani
,
M.
,
Naderi
,
M. H.
, and
Babayan
,
N.
,
2019
, “
Optimization of Airfoil Based Savonius Wind Turbine Using Coupled Discrete Vortex Method and Salp Swarm Algorithm
,”
J. Cleaner Prod.
,
222
(
17
), pp.
47
56
.
12.
Montelpare
,
S.
,
D’Alessandro
,
V.
,
Zoppi
,
A.
, and
Ricci
,
R.
,
2018
, “
Experimental Study on a Modified Savonius Wind Rotor for Street Lighting Systems. Analysis of External Appendages and Elements
,”
Energy
,
144
(
3
), pp.
146
158
.
13.
Mohammed
,
A. A.
,
Ouakad
,
H. M.
,
Sahin
,
A. Z.
, and
Bahaidarah
,
H.
,
2019
, “
Vertical Axis Wind Turbine Aerodynamics: Summary and Review of Momentum Models
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
050801
.
14.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renew. Sustain. Energy Rev.
,
16
(
5
), pp.
3054
3064
.
15.
Hayashi
,
T.
,
Li
,
Y.
, and
Hara
,
Y.
,
2005
, “
Wind Tunnel Tests on a Different Phase Three-Stage Savonius Rotor
,”
JSME Int. J. Ser. B Fluids Therm. Eng.
,
48
(
1
), pp.
9
16
.
16.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Investigations on Single Stage, Two Stage and Three Stage Conventional Savonius Rotor
,”
Int. J. Energy Res.
,
32
(
10
), pp.
877
895
.
17.
Frikha
,
S.
,
Driss
,
Z.
,
Ayadi
,
E.
,
Masmoudi
,
Z.
, and
Abid
,
M. S.
,
2016
, “
Numerical and Experimental Characterization of Multi-Stage Savonius Rotors
,”
Energy
,
114
(
21
), pp.
382
404
.
18.
Kumar
,
P. M.
,
Surya
,
M. M. R.
,
Narasimalu
,
S.
, and
Lim
,
T. C.
,
2019
, “
Experimental and Numerical Investigation of Novel Savonius Wind Turbine
,”
Wind Eng.
,
43
(
3
), pp.
247
262
.
19.
Kumar
,
A.
, and
Saini
,
R. P.
,
2016
, “
Performance Parameters of Savonius Type Hydrokinetic Turbine—A Review
,”
Renew. Sustain. Energy Rev.
,
64
(
10
), pp.
289
310
.
20.
Sheldahl
,
R. E.
,
Blackwell
,
B. F.
, and
Feltz
,
L. V.
,
1978
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,”
J. Energy
,
2
(
3
), pp.
160
164
.
21.
Mahmoud
,
N. H.
,
El-Haroun
,
A. A.
,
Wahba
,
E.
, and
Nasef
,
M. H.
,
2012
, “
An Experimental Study on Improvement of Savonius Rotor Performance
,”
Alexandria Eng. J.
,
51
(
1
), pp.
19
25
.
22.
Ferrari
,
G.
,
Federici
,
D.
,
Schito
,
P.
,
Inzoli
,
F.
, and
Mereu
,
R.
,
2017
, “
CFD Study of Savonius Wind Turbine: 3D Model Validation and Parametric Analysis
,”
Renew. Energy
,
105
(
5
), pp.
722
734
.
23.
Bhayo
,
B. A.
, and
Al-Kayiem
,
H. H.
,
2017
, “
Experimental Characterization and Comparison of Performance Parameters of S-Rotors for Standalone Wind Power System
,”
Energy
,
138
(
22
), pp.
752
763
.
24.
Ogawa
,
T.
, and
Yoshida
,
H.
,
1986
, “
The Effects of a Deflecting Plate and Rotor end Plates on Performances of Savonius-Type Wind Turbine
,”
Bull. JSME
,
29
(
253
), pp.
2115
2121
.
25.
Jeon
,
K. S.
,
Jeong
,
J. I.
,
Pan
,
J. K.
, and
Ryu
,
K. W.
,
2015
, “
Effects of End Plates With Various Shapes and Sizes on Helical Savonius Wind Turbines
,”
Renew. Energy
,
79
(
7
), pp.
167
176
.
26.
Saad
,
A. S.
,
El-Sharkawy
,
I. I.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2020
, “
Performance Enhancement of Twisted-Bladed Savonius Vertical Axis Wind Turbines
,”
Energy Convers. Manage.
,
209
(
7
), p.
112673
.
27.
Fujisawa
,
N.
,
1992
, “
On the Torque Mechanism of Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
40
(
3
), pp.
277
292
.
28.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
.
29.
D’Alessandro
,
V.
,
Montelpare
,
S.
,
Ricci
,
R.
, and
Secchiaroli
,
A.
,
2010
, “
Unsteady Aerodynamics of a Savonius Wind Rotor: A New Computational Approach for the Simulation of Energy Performance
,”
Energy
,
35
(
8
), pp.
3349
3363
.
30.
Emmanuel
,
B.
, and
Jun
,
W.
,
2011
, “
Numerical Study of a Six-Bladed Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
044503
.
31.
Shojaeefard
,
M. H.
,
Tahani
,
M.
,
Ehghaghi
,
M. B.
,
Fallahian
,
M. A.
, and
Beglari
,
M.
,
2012
, “
Numerical Study of the Effects of Some Geometric Characteristics of a Centrifugal Pump Impeller That Pumps a Viscous Fluid
,”
Comput. Fluids
,
60
(
8
), pp.
61
70
.
32.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Influence of Blade Profiles on Savonius Rotor Performance: Numerical Simulation and Experimental Validation
,”
Energy Convers. Manage.
,
186
(
8
), pp.
267
277
.
33.
Tian
,
W.
,
Mao
,
Z.
,
Zhang
,
B.
, and
Li
,
Y.
,
2018
, “
Shape Optimization of a Savonius Wind Rotor With Different Convex and Concave Sides
,”
Renew. Energy
,
117
(
3
), pp.
287
299
.
34.
Ostos
,
I.
,
Ruiz
,
I.
,
Gajic
,
M.
,
Gómez
,
W.
,
Bonilla
,
A.
, and
Collazos
,
C.
,
2019
, “
A Modified Novel Blade Configuration Proposal for a More Efficient VAWT Using CFD Tools
,”
Energy Convers. Manage.
,
180
(
2
), pp.
733
746
.
35.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
36.
Sagharichi
,
A.
,
Ghaghelestani
,
T. N.
, and
Toudarbari
,
S.
,
2019
, “
Impact of Harmonic Pitch Functions on Performance of Darrieus Wind Turbine
,”
J. Cleaner Prod.
,
241
(
36
), p.
118310
.
37.
El-Askary
,
W. A.
,
Saad
,
A. S.
,
AbdelSalam
,
A. M.
, and
Sakr
,
I. M.
,
2018
, “
Investigating the Performance of a Twisted Modified Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
182
(
11
), pp.
344
355
.
38.
El-Askary
,
W. A.
,
Saad
,
A. S.
,
AbdelSalam
,
A. M.
, and
Sakr
,
I. M.
,
2020
, “
Experimental and Theoretical Studies for Improving the Performance of a Modified Shape Savonius Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121303
.
39.
Saad
,
A. S.
,
Elwardany
,
A.
,
El-Sharkawy
,
I. I.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2021
, “
Performance Evaluation of a Novel Vertical Axis Wind Turbine Using Twisted Blades in Multi-Stage Savonius Rotors
,”
Energy Convers. Manage.
,
235
(
9
), p.
114013
.
40.
Thé
,
J.
, and
Yu
,
H.
,
2017
, “
A Critical Review on the Simulations of Wind Turbine Aerodynamics Focusing on Hybrid RANS-LES Methods
,”
Energy
,
138
(
21
), pp.
257
289
.
41.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2016
, “
Performance Improvement of Savonius Rotor Using Multiple Quarter Blades—A CFD Investigation
,”
Energy Convers. Manage.
,
127
(
21
), pp.
43
54
.
42.
Fluent
,
2020
,
User’s Guide Fluent 2020 R2
,
Fluent Incorporated
,
Lebanon, NH
.
43.
Marinić-Kragić
,
I.
,
Vučina
,
D.
, and
Milas
,
Z.
,
2020
, “
Computational Analysis of Savonius Wind Turbine Modifications Including Novel Scooplet-Based Design Attained Via Smart Numerical Optimization
,”
J. Cleaner Prod.
,
262
(
21
), p.
121310
.
44.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Examining the Aerodynamic Drag and Lift Characteristics of a Newly Developed Elliptical-Bladed Savonius Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051201
.
45.
Saad
,
A. S.
,
Ookawara
,
S.
,
Elwardany
,
A.
,
El-Sharkawy
,
I. I.
, and
Ahmed
,
M.
,
2020
, “
Effect of the Number of Stages on the Performance of Savonius Vertical Axis Wind Turbines: Part I—Using Straight Semicircular Blades
,”
Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition
,
Virtual, Online
,
Nov. 16–19, ASME, Vol. 10
,
p. V010T10A058
.
46.
Alakashi
,
A. M.
, and
Basuno
,
I. B.
,
2014
, “
Comparison Between Structured and Unstructured Grid Generation on Two Dimensional Flows Based on Finite Volume Method (FVM)
,”
Int. J. Min. Metall. Mech. Eng.
,
2
(
2
), pp.
97
103
.
47.
Tahani
,
M.
,
Babayan
,
N.
,
Mehrnia
,
S.
, and
Shadmehri
,
M.
,
2016
, “
A Novel Heuristic Method for Optimization of Straight Blade Vertical Axis Wind Turbine
,”
Energy Convers. Manage.
,
127
(
21
), pp.
461
476
.
48.
Saad
,
A. S.
,
Ookawara
,
S.
,
Elwardany
,
A.
,
El-Sharkawy
,
I. I.
, and
Ahmed
,
M.
,
2020
, “
Effect of the Number of Stages on the Performance of Savonius Vertical Axis Wind Turbines: Part II—Using Twisted Blades
,”
Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition
,
Virtual, Online
,
Nov. 16–19
, ASME, Vol.
10
, p.
V010T10A059
You do not currently have access to this content.