Abstract
In this paper, the two-dimensional parallel light extinction method was carried out to study the soot formation in laminar diffusion flames of four different ethanol-gasoline blends, of which ethanol volume fractions ranging from 0% up to 100% (E0, E20, E80, and E100). The flame images were processed synthetically via matlab to accurately calculate the flame height. In addition, the flame structure was redefined as three zones to observe the soot formation. The results indicate that the flame height changes with the variation of gas volume flowrate and fuel mass flowrate during the experiment. In terms of soot formation, as the volume fraction of ethanol increases, the proportion of soot forming zone decreases, while the area of blue flame zone grows. Simultaneously, the transition zone accounts for about 21% of the total flame area, which has no significant change with the increase of ethanol volume fraction.