Abstract

Based on the critical velocity model, impact and capture efficiencies in an AGTB turbine cascade are investigated numerically under various inlet angles of mainstream, blowing ratios, particle sizes, and particle densities. The effect of hole configuration on deposition is analyzed based on comparisons of results from combined hole and cylindrical hole. The impact efficiency increases with the increase of particle size. Impact area on pressure side of blade surface expands with increasing of the mainstream inlet angle from 123 deg to 143 deg. The capture efficiency decreases with the increase of blowing ratio for 10 µm particles. For particles with densities of 1485 kg/m3, 1980 kg/m3, and 2475 kg/m3, the maximum capture efficiency is reached when the particle size is 5 µm. The particle capture efficiency for the combined hole is up to 3.9% lower than that for cylindrical hole when the mainstream inlet angle is 123 deg.

References

1.
Zhang
,
G.
,
Liu
,
J.
,
Sundén
,
B.
, and
Xie
,
G.
,
2020
, “
Improvements of the Adiabatic Film Cooling by Using Two-Row Holes of Different Geometries and Arrangements
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122101
.
2.
Bravo-Mosquera
,
P. D.
,
Botero-Bolivar
,
L.
,
Acevedo-Giraldo
,
D.
, and
Cerón-Muñoz
,
H. D.
,
2017
, “
Aerodynamic Design Analysis of a UAV for Superficial Research of Volcanic Environments
,”
Aerosp. Sci. Technol.
,
70
, pp.
600
614
.
3.
Głód
,
K.
,
Lasek
,
J.
,
Słowik
,
K.
,
Zuwała
,
J.
,
Nabagło
,
D.
,
Jura
,
K.
, and
Żyrkowski
,
M.
,
2020
, “
Investigation of Ash-Related Issues During Combustion of Maize Straw and Wood Biomass Blends in Lab-Scale Bubbling Fluidized Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022201
.
4.
Li
,
G.
,
Yang
,
P.
,
Zhang
,
W.
, and
Mo
,
W.
,
2020
, “
Degradation of the Cooling Performance of the Double Wall Nozzle Guide Vane in an Engine
,”
Appl. Therm. Eng.
,
167
, p.
114765
.
5.
Bojdo
,
N.
,
Filippone
,
A.
,
Parkes
,
B.
, and
Clarkson
,
R.
,
2020
, “
Aircraft Engine Dust Ingestion Following Sand Storms
,”
Aerosp. Sci. Technol.
,
106
, p.
106072
.
6.
Lawson
,
S. A.
,
Thole
,
K. A.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2012
, “
Simulations of Multiphase Particle Deposition on a Showerhead with Staggered Film-Cooling Holes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051041
.
7.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2013
, “
Effect of Blowing Ratio on Early Stage Deposition of Syngas Ash on a Film-Cooled Vane Leading Edge Using Large Eddy Simulations
,”
ASME J. Turbomach.
,
135
(
6
), p.
061005
.
8.
Casaday
,
B. P.
,
Ameri
,
A. A.
, and
Bons
,
J. P.
,
2013
, “
Numerical Investigation of Ash Deposition on Nozzle Guide Vane Endwalls
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
032001
.
9.
Wang
,
J.
,
Tian
,
K.
,
Zhu
,
H.
,
Zeng
,
M.
, and
Sundén
,
B.
,
2020
, “
Numerical Investigation of Particle Deposition in Film-Cooled Blade Leading Edge
,”
Numer. Heat Transf. A
,
77
(
6
), pp.
579
598
.
10.
Zhou
,
J.
, and
Zhang
,
J.
,
2017
, “
Numerical Investigation of Particle Deposition on Converging Slot-Hole Film-Cooled Wall
,”
J. Cent. South Univ.
,
24
(
12
), pp.
2819
2828
.
11.
Wang
,
J.
,
Zhao
,
Z.
,
Tian
,
L.
,
Ren
,
X.
, and
Sundén
,
B.
,
2021
, “
Effects of Hole Configuration on Film Cooling Effectiveness and Particle Deposition on Curved Surfaces in Gas Turbines
,”
Appl. Therm. Eng.
,
190
, p.
116861
.
12.
Liu
,
Z. G.
,
Zhang
,
F.
,
Liu
,
Z. X.
, and
Diao
,
W. N.
,
2020
, “
An Experimental Study of the Effects of Different Transverse Trenches on Deposition on a Turbine Vane With Film-Cooling at High Temperature
,”
Aerosp. Sci. Technol.
,
107
, p.
106340
.
13.
Wang
,
J.
,
Lin
,
Y.
,
Xu
,
W.
,
Li
,
Q.
, and
Dandekar
,
A.
,
2019
, “
Effects of Blade Roughness on Particle Deposition in Flue Gas Turbines
,”
Powder Technol.
,
353
, pp.
426
432
.
14.
Pan
,
J.
,
Wang
,
J.
,
Chen
,
S.
,
Zhang
,
X.
, and
Liu
,
S.
,
2018
, “
Numerical Study of Inlet Reynolds Number in Fine Particles Deposition Processes in a Flue Gas Turbine
,”
Powder Technol.
,
339
, pp.
506
520
.
15.
Jia
,
H.
,
Xi
,
G.
,
Gao
,
L.
, and
Wen
,
S.
,
2005
, “
Effects of Deposition Models on Deposition and Performance Deterioration in Axial Compressor Cascade
,”
Chin. J. Aeronaut.
,
18
, pp.
20
24
.
16.
Wang
,
J.
,
Cui
,
P.
,
Sundén
,
B.
, and
Vujanović
,
M.
,
2016
, “
Effects of Deposition Height and Width on Film Cooling
,”
Numer. Heat Transf. A
,
70
(
6
), pp.
673
687
.
17.
Huang
,
K.
,
Zhang
,
J.
,
Tan
,
X.
, and
Shan
,
Y.
,
2018
, “
Experimental Study on Film Cooling Performance of Imperfect Holes
,”
Chin. J. Aeronaut.
,
31
(
6
), pp.
1215
1221
.
18.
Wang
,
J.
,
Tian
,
K.
,
Zhang
,
K.
,
Baleta
,
J.
, and
Sundén
,
B.
,
2018
, “
Effect of Spherical Blockage Configurations on Film Cooling
,”
Therm. Sci.
,
22
(
5
), pp.
1933
1942
.
19.
Ardey
,
S.
, and
Fottner
,
L.
,
1997
, “
Flow Field Measurements on a Large Scale Turbine Cascade with Leading Edge Film Cooling by Two Rows of Holes
,” ASME Paper No. 97- GT-524.
20.
Khajehhasani
,
S.
, and
Jubran
,
B.
,
2015
, “
Numerical Evaluation of the Performance of the Sister-Shaped Single-Hole Schemes on Turbine Blade Leading Edge Film Cooling
,” ASME Paper No. GT2015-44121.
21.
Tian
,
K.
,
Wang
,
J.
,
Liu
,
C.
,
Baleta
,
J.
,
Yang
,
L.
, and
Sundén
,
B.
,
2018
, “
Effect of Combined Hole Configuration on Film Cooling with and Without Mist Injection
,”
Therm. Sci.
,
22
, pp.
1923
1931
.
22.
Sun
,
W.
,
Zhong
,
W.
,
Zhang
,
J.
, and
Echekki
,
T.
,
2019
, “
Large Eddy Simulation on the Effects of Coal Particles Size on Turbulent Combustion Characteristics and NOx Formation Inside a Corner-Fired Furnace
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082302
.
23.
Teng
,
L.
,
Li
,
Y.
,
Han
,
H.
,
Zhao
,
P.
, and
Zhang
,
D.
,
2018
, “
Flow and Deposition Characteristics Following Chokes for Pressurized CO2 Pipelines
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
073001
.
24.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microsphers
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.
25.
Ai
,
W.
, and
Fletcher
,
T. H.
,
2011
, “
Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041020
.
26.
EI-Batsh
,
H.
, and
Haselbacher
,
H.
,
2002
, “
Numerical Investigation of the Effect of Ash Particle Deposition
,” ASME Paper No. GT2002-30600.
27.
Islami
,
S. B.
,
Tabrizi
,
S. P. A.
,
Jubran
,
B. A.
, and
Esmaeilzadeh
,
E.
,
2010
, “
Influence of Trenched Shaped Holes on Turbine Blade Leading Edge Film Cooling
,”
Heat Transfer Eng.
,
31
, pp.
889
906
.
28.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
Mare
,
L.
,
Montomoli
,
F.
, and
Pinelli
,
M.
,
2019
, “
Generalization of Particle Impact Behavior in Gas Turbine via Non-Dimensional Grouping
,”
Prog. Energy Combust. Sci.
,
74
, pp.
103
151
.
You do not currently have access to this content.