Abstract

Application of a range extender in an electric vehicle can reduce the battery bank size and extend the driving range on a need basis. A micro gas turbine offers high power density, fuel flexibility, a reliable thermal efficiency (with recuperation), and less raw exhaust gaseous emissions compared to an internal combustion engine. However, micro gas turbines also incur low component performances due to small-scale effects related to high viscous losses, heat transfer between hot and cold sections, and manufacturing and assembly constraints compared to their larger counterparts. In this paper, the micro gas turbine thermodynamic cycle has been designed in Gas Turbine Simulation Program (GSP) and evaluated in terms of the small-scale effects simultaneously with the battery bank energy and charging time analysis. The key objective is to demonstrate the effectiveness of a micro gas turbine in saving the weight of a range-extended electric vehicle while understanding the impact of small-scale effects on the battery bank energy and charging time. Results indicate that a relatively smaller 22-kWh battery bank can be utilized with prospects of cost-savings together with a 47-kW micro gas turbine range extender to achieve an average driving range of 100 km and a charging time of 30 min for the baseline electric vehicle. Furthermore, the compressor and turbine isentropic efficiencies are found to have a significant impact on the overall battery bank performance.

References

1.
European Commission
,
2019
,
Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles, and Repealing Regulations (EC) No 443/2009 and (EU) No 510/2011.
.
2.
Continental Automotive Emission Booklet
,
2019
,
Worldwide Emission Standards and Related Regulations – Passenger Cars/Light and Medium Duty Vehicles, CPT Group GmbH, Germany
.
3.
Nguyen
,
H. P.
,
Hoang
,
A. T.
,
Le
,
A. T.
,
Pham
,
V. V.
, and
Tran
,
V. N.
,
2020
, “
Learned Experiences From the Policy and Roadmap of Advanced Countries for the Strategic Orientation to Electric Vehicles: A Case Study in Vietnam
,”
Energy Sources Part A
, pp.
1
10
.
4.
IEA
,
2020
, “Global EV Outlook 2020,” IEA, Paris, https://www.iea.org/reports/global-ev-outlook-2020.
5.
Adler
,
K.
,
2021
,
IHS Markit Forecasts Global EV Sales to Rise by 70% in 2021, IHS Markit, United Kingdom
.
6.
Deloitte Insights
,
2020
,
Electric Vehicles – Setting a Course for 2030, Deloitte Global, New York, USA
.
7.
Gupta
,
K.
,
Narayanankutty
,
R. A.
,
Sundaramoorthy
,
K.
, and
Sankar
,
A.
,
2020
, “
Optimal Location Identification for Aggregated Charging of Electric Vehicles in Solar Photovoltaic Powered Microgrids With Reduced Distribution Losses
,”
Energy Sources Part A
, pp.
1
16
.
8.
Woo
,
J.
,
Choi
,
H.
, and
Ahn
,
J.
,
2017
, “
Well-to-Wheel Analysis of Greenhouse Gas Emissions for Electric Vehicles Based on Electricity Generation Mix: A Global Perspective
,”
Trans. Research Part D: Transp. Environment
,
51
, pp.
340
350
.
9.
Athanasopoulou
,
L.
,
Bikas
,
H.
, and
Stavropoulos
,
P.
,
2018
, “
Comparative Well-to-Wheel Emissions Assessment of Internal Combustion Engine and Battery Electric Vehicles
,”
Procedia CIRP
,
78
, pp.
25
30
.
10.
Deloitte Insights
,
2020
,
2020 Global Auto Consumer Study, Deloitte Global, New York, USA
.
11.
Shi
,
X.
,
Pan
,
J.
,
Wang
,
H.
, and
Cai
,
H.
,
2019
, “
Battery Electric Vehicles: What Is the Minimum Range Required?
,”
Energy
,
166
, pp.
352
358
.
12.
Zuccari
,
F.
,
Orecchini
,
F.
,
Santiangeli
,
A.
,
Suppa
,
T.
,
Ortenzi
,
F.
,
Genovese
,
A.
, and
Pede
,
G.
,
2019
, “
Well to Wheel Analysis and Comparison Between Conventional, Hybrid and Electric Powertrain in Real Conditions of Use
,”
AIP Conf. Proc.
,
2191
(
1
), p.
020158
.
13.
EUROBAT Report
,
2014
,
A Review of Battery Technologies for Automotive Applications, European Automobile Manufacturers' Association (ACEA), Belgium
.
14.
Scarfogliero
,
M.
,
Carmeli
,
S.
,
Castelli-Dezza
,
F.
,
Mauri
,
M.
,
Rossi
,
M.
,
Marchegiani
,
G.
, and
Rovelli
,
E.
,
2018
, “
Lithium-Ion Batteries for Electric Vehicles: A Review on Ageing Models for Vehicle-to-Grid Services
,”
Proceedings of 2018 International Conference of Electrical and Electronic Technologies for Automotive
,
Milan, Italy
,
July 9–11
, pp.
1
6
.
15.
Zichen
,
W.
, and
Changqing
,
D.
,
2021
, “
A Comprehensive Review on Thermal Management Systems for Power Lithium-Ion Batteries
,”
Renewable Sustainable Energy Rev.
,
139
, pp.
1
23
.
16.
Chen
,
Y.
,
Kang
,
Y.
,
Zhao
,
Y.
,
Wang
,
L.
,
Liu
,
J.
,
Li
,
Y.
,
Liang
,
Z.
,
He
,
X.
,
Li
,
X.
,
Tavajohi
,
N.
, and
Li
,
B.
,
2021
, “
A Review of Lithium-ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards
,”
J. Energy Chem.
,
59
, pp.
83
99
.
17.
Iclodean
,
C.
,
Varga
,
B.
,
Burnete
,
N.
,
Cimerdean
,
D.
, and
Jurchis
,
B.
,
2017
, “
Comparison of Different Battery Types for Electric Vehicles
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
252
, pp.
1
10
.
18.
Propfe
,
B.
,
Redelbach
,
M.
,
Santini
,
D. J.
, and
Friedrich
,
H.
,
2012
, “
Cost Analysis of Plug-in Hybrid Electric Vehicles Including Maintenance and Repair Costs and Resale Values
,”
World Electr. Veh. J.
,
5
(
4
), pp.
886
895
.
19.
Nykvist
,
B.
, and
Nilsson
,
M.
,
2015
, “
Rapidly Falling Costs of Battery Packs for Electric Vehicles
,”
Nature
,
5
, pp.
329
332
.
20.
Chen
,
M. Y.
,
Ouyang
,
D. X.
,
Liu
,
J. H.
, and
Wang
,
J.
,
2019
, “
Investigation on Thermal and Fire Propagation Behaviors of Multiple Lithium-Ion Batteries Within the Package
,”
Appl. Therm. Eng.
,
157
, pp.
1
10
.
21.
Yang
,
Y.
,
Okonkwo
,
E. G.
,
Huang
,
G.
,
Xu
,
S.
,
Sun
,
W.
, and
He
,
Y.
,
2021
, “
On the Sustainability of Lithium Ion Battery Industry—A Review and Perspective
,”
Energy Storage Mater.
,
36
, pp.
186
212
.
22.
Lin
,
Z.
,
2014
, “
Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers
,”
Transp. Sci.
,
48
(
4
), pp.
465
694
.
23.
2012
, “
European Commission-JCR Scientific and Policy Reports: Driving and Parking Patterns of European Car Drivers—a Mobility Survey
,” Report No. EUR 25627 EN.
24.
Karvountzis-Kontakiotis
,
A.
,
Andwari
,
A. M.
,
Pesyridis
,
A.
,
Russo
,
S.
,
Tuccillo
,
R.
, and
Esfahanian
,
V.
,
2018
, “
Application of Micro Gas Turbine in Range-Extended Electric Vehicles
,”
Energy
,
147
, pp.
351
361
.
25.
Christodoulou
,
F.
,
Giannakakis
,
P.
, and
Kalfas
,
A. I.
,
2011
, “
Performance Benefits of a Portable Hybrid Micro-Gas Turbine Power System for Automotive Application
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
022301
.
26.
Andwari
,
A. M.
,
2017
, “
A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine
,” Energies,
10
(
8
), pp.
1
17
.
27.
Andwari
,
A. M.
,
Pesiridis
,
A.
,
Rajoo
,
S.
,
Martinez-Botas
,
R.
, and
Esfahanian
,
V.
,
2017
, “
A Review of Battery Electric Vehicle Technology and Readiness Levels
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
414
430
.
28.
Visser
,
W. P. J.
,
Shakariyants
,
S. A.
, and
Oostveen
,
M.
,
2007
, “
Development of a 3 kW-e Microturbine for CHP Applications
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), pp.
696
703
.
29.
Abagnale
,
C.
,
Cameretti
,
M. C.
,
De Robbio
,
R.
, and
Tuccillo
,
R.
,
2016
, “
CFD Study of a MGT Combustor Supplied With Syngas
,”
Energy Procedia
,
101
, pp.
933
940
.
30.
Tan
,
F. X.
,
Chiong
,
M. S.
,
Rajoo
,
S.
,
Romagnoli
,
A.
,
Palenschat
,
T.
, and
Martinez-Botas
,
R. F.
,
2017
, “
Analytical and Experimental Study of Micro Gas Turbine as Range Extender for Electric Vehicles in Asian Cities
,”
Energy Procedia
,
143
, pp.
53
60
.
31.
Javed
,
A.
,
Arpagaus
,
C.
,
Bertsch
,
S.
, and
Schiffmann
,
J.
,
2016
, “
Small-Scale Turbocompressors for Wide-Range Operation With Large Tip-Clearances for a Two-Stage Heat Pump Concept
,”
Int. J. Refrig.
,
69
, pp.
285
302
.
32.
Yamada
,
T.
, and
Asako
,
Y.
,
2007
, “
Scale Effect on Gaseous Flow Around a Micro-scaled Gas Turbine Blade
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
696
703
.
33.
Gimelli
,
A.
, and
Sannino
,
R.
,
2017
, “
Thermodynamic Model Validation of Capstone C30 Micro Gas Turbine
,”
Energy Procedia
,
126
, pp.
955
962
.
34.
Zheng
,
Y.
,
Ouyang
,
M.
,
Han
,
X.
,
Lu
,
L.
, and
Li
,
J.
,
2018
, “
Investigating the Error Sources of the Online State of Charge Estimation Methods for Lithium-Ion Batteries in Electric Vehicles
,”
J. Power Sources
,
377
, pp.
161
188
.
35.
Musk
,
E.
, and
Straubel
,
J. B.
,
2012
,
Model S Efficiency and Range, Tesla, Inc., USA
.
36.
Mesbahi
,
T.
,
Rizoug
,
N.
,
Bartholomeus
,
P.
,
Sadoun
,
R.
,
Khenfri
,
F.
, and
Le Moigne
,
P.
,
2018
, “
Dynamic Model of Li-Ion Batteries Incorporating Electrothermal and Ageing Aspects for Electric Vehicle Applications
,”
IEEE Trans. Ind. Electron.
,
65
(
2
), pp.
1298
1305
.
37.
Hinz
,
H.
,
2019
, “
Comparison of Lithium-Ion Battery Models for Simulating Storage Systems in Distributed Power Generation
,”
Inventions
,
4
(
3
), pp.
1
22
.
38.
Panasonic HQ News
,
2019
,
Panasonic Develops High-Capacity Lithium-Ion Battery Cells that can Power Laptops and Electric Vehicles, Panasonic Corporation, Osaka, Japan
.
39.
Plakhtii
,
O.
,
Nerubatskyi
,
V.
,
Mashura
,
A.
, and
Hordiienko
,
D.
,
2020
, “
The Analysis of Mathematical Models of Charge-Discharge Characteristics in Lithium-Ion Batteries
,”
Proceedings of IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO)
,
Kyiv, Ukraine
,
Apr. 22–24
, pp.
635
640
.
40.
Wikner
,
E.
, and
Thiringer
,
T.
,
2018
, “
Extending Battery Lifetime by Avoiding High SOC
,”
Appl. Sci.
,
8
(
10
), pp.
1
16
.
41.
Nguyen
,
H. P.
,
Hoang
,
A. T.
,
Nizetic
,
S.
,
Nguyen
,
X. P.
,
Le
,
A. T.
,
Luong
,
C. N.
,
Chu
,
V. D.
, and
Pham
,
V. V.
,
2020
, “
The Electric Propulsion System as a Green Solution for Management Strategy of CO2 Emission in Ocean Shipping: A Comprehensive Review
,”
Int. Trans. Electr. Energy Syst.
, pp.
1
29
.
You do not currently have access to this content.