Abstract

Low-carbon alcohols have been universally acknowledged as an alternative to fossil fuel in the world, which is environmentally friendly and clean. In this paper, the detailed exergy and energy analysis was carried out on a turbocharged, spark-ignition (SI) engine fueled with methanol−ethanol−gasoline (GEM) under non-knock conditions. The results indicated that increasing the alcohols proportion in blends could slightly improve the exergy efficiency and thermal efficiency and increase the percentage of total irreversibility in the total exergy. The thermal efficiency and exergy efficiency increased to a maximum value and then decreased, while the proportion of total irreversibility in the total exergy increased significantly with the spark timing retarded from the earliest timing. The exergy efficiency and thermal efficiency increased as the engine load increased. Additionally, the total irreversibility increased but the proportion of total irreversibility in the total exergy presented a trend of decreasing as the engine load increased.

References

1.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
.
2.
Sharma
,
N.
,
Agarwal
,
R. A.
, and
Agarwal
,
A. K.
,
2019
, “
Particulate Bound Trace Metals and Soot Morphology of Gasohol Fueled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022201
.
3.
Hwang
,
J. T.
,
Nord
,
A. J.
, and
Northrop
,
W. F.
,
2017
, “
Efficacy of Add-On Hydrous Ethanol Dual Fuel Systems to Reduce NOx Emissions From Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042206
.
4.
Sequera
,
A. J.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2011
, “
Effects of Fuel Injection Timing in the Combustion of Biofuels in a Diesel Engine at Partial Loads
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
022203
.
5.
Zhang
,
Z. J.
,
Wang
,
T. Y.
,
Jia
,
M.
,
Wei
,
Q.
,
Meng
,
X. Z.
, and
Shu
,
G. Q.
,
2014
, “
Combustion and Particle Number Emissions of a Direct Injection Spark Ignition Engine Operating on Ethanol/Gasoline and n-Butanol/Gasoline Blends With Exhaust Gas Recirculation
,”
Fuel
,
130
, pp.
177
188
.
6.
Thakur
,
A. K.
,
Kaviti
,
A. K.
,
Mehra
,
R.
, and
Mer
,
K. K. S.
,
2017
, “
Progress in Performance Analysis of Ethanol-Gasoline Blends on SI Engine
,”
Renew. Sustain. Energy Rev.
,
69
, pp.
324
340
.
7.
Cheng
,
S.
,
Kang
,
D.
,
Fridlyand
,
A.
,
Goldsborough
,
S. S.
,
Saggese
,
C.
,
Wagnon
,
S.
,
McNenly
,
M. J.
,
Mehl
,
M.
,
Pitz
,
W. J.
, and
Vuilleumier
,
D.
,
2020
, “
Autoignition Behavior of Gasoline/Ethanol Blends at Engine-Relevant Conditions
,”
Combust. Flame
,
216
, pp.
369
384
.
8.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2014
, “
Experimental Investigations of Particulate Size and Number Distribution in an Ethanol and Methanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012201
.
9.
Yan
,
Y.
,
Guo
,
Y.
,
Gao
,
D. Z.
, and
Wang
,
F. B.
,
2020
, “
Experimental Research on the Influence of Different Blending Ratios of Ethanol Gasoline on Heavy Vehicle Emissions
,”
Small Intern. Combust. Engine Motorcycle
,
049
(
002
), pp.
71
76
.
10.
Elfasakhany
,
A.
,
2015
, “
Investigations on the Effects of Ethanol–Methanol–Gasoline Blends in a Spark-Ignition Engine: Performance and Emissions Analysis
,”
Eng. Sci. Technol. Int. J.
,
18
(
4
), pp.
713
719
.
11.
Hsieh
,
W. D.
,
Chen
,
R. H.
,
Wu
,
T. L.
, and
Lin
,
T. H.
,
2002
, “
Engine Performance and Pollutant Emission of an SI Engine Using Ethanol-Gasoline Blended Fuels
,”
Atmos. Environ.
,
36
(
3
), pp.
403
410
.
12.
Wei
,
Z. P.
,
Xie
,
H.
,
He
,
B. Q.
, and
Zhao
,
H.
,
2007
, “
Comparison of Combustion and Emission Characteristics of HCCI Combustion Fueled With Methanol, Ethanol and Gasoline
,”
Trans. CSICE
,
25
(
3
), pp.
223
228
.
13.
Miganakallu
,
N.
,
Yang
,
Z. Y.
,
Rogóż
,
R.
,
Kapusta
,
L. J.
,
Christensen
,
C.
,
Barros
,
S.
, and
Naber
,
J.
,
2020
, “
Effect of Water−Methanol Blends on Engine Performance at Borderline Knock Conditions in Gasoline Direct Injection Engines
,”
Appl. Energy
,
264
, p.
114750
.
14.
Canakci
,
M.
,
Ozsezen
,
A. N.
,
Alptekin
,
E.
, and
Eyidogan
,
M.
,
2013
, “
Impact of Alcohol–Gasoline Fuel Blends on the Exhaust Emission of an SI Engine
,”
Renew. Energy
,
52
(
2
), pp.
111
117
.
15.
Mourad
,
M.
, and
Mahmoud
,
K.
,
2019
, “
Investigation Into SI Engine Performance Characteristics and Emissions Fuelled With Ethanol/Butanol-Gasoline Blends
,”
Renew. Energy
,
143
, pp.
762
771
.
16.
Elfasakhany
,
A.
,
2016
, “
Experimental Study of Dual n-Butanol and Iso-Butanol Additives on Spark-Ignition Engine Performance and Emissions
,”
Fuel
,
163
, pp.
166
174
.
17.
Zhang
,
C. Z.
,
Ge
,
Y. S.
,
Tan
,
J. W.
,
Li
,
L.
,
Peng
,
Z. H.
, and
Wang
,
X.
,
2017
, “
Emissions From Light-Duty Passenger Cars Fueled With Ternary Blend of Gasoline, Methanol, and Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062202
.
18.
Sileghem
,
L.
,
Coppens
,
A.
,
Casier
,
B.
,
Vancoillie
,
J.
, and
Verhelst
,
S.
,
2014
, “
Performance and Emissions of Iso-Stoichiometric Ternary GEM Blends on a Production SI Engine
,”
Fuel
,
117
(
Part A
), pp.
286
293
.
19.
Turner
,
J.
,
Pearson
,
R.
,
Purvis
,
R.
,
Dekker
,
E.
, and
Bergström
,
K.
,
2011
, “
GEM Ternary Blends: Removing the Biomass Limit by Using Iso-Stoichiometric Mixtures of Gasoline, Ethanol and Methanol
,”
SAE Paper No. 2011-24-0113
.
20.
Lumsden
,
G.
,
OudeNijeweme
,
D.
,
Fraser
,
N.
, and
Blaxill
,
H.
,
2009
, “
Development of a Turbocharged Direct Injection Downsizing Demonstrator Engine
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1420
1432
.
21.
Lawand
,
V. J.
, and
Caton
,
J. A.
,
2009
, “
A Turbocharged, Spark-Ignition Engine: Results From an Engine Cycle Simulation Including the Second Law of Thermodynamics
,”
ASME Internal Combustion Engine Division Spring Technical Conference
,
Milwaukee, WI
,
May 3–6
, pp.
505
519
.
22.
Li
,
H. L.
, and
Karim
,
G. A.
,
2008
, “
Modeling the Performance of a Turbo-Charged Spark Ignition Natural Gas Engine With Cooled Exhaust Gas Recirculation
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), pp.
460
466
.
23.
Lawand
,
V. J.
, and
Caton
,
J. A.
,
2010
, “
The Effects of Heat Transfer on Performance and Exergy Destruction for a Turbocharged, Spark-Ignition Engine
,”
Proc. Inst. Mech. Eng., Part D
,
224
(
D9
), pp.
1229
1240
.
24.
Caton
,
J. A.
,
2009
, “
A Thermodynamic Evaluation of the Use of Alcohol Fuels in a Spark-Ignition Engine
,”
SAE Int. J. Fuels
,
2
(
2
), pp.
1
19
.
25.
Caton
,
J. A.
,
2000
, “
A Review of Investigations Using the Second Law of Thermodynamics to Study Internal-Combustion Engines
,”
SAE Tech. Pap.
,
17
(
4
), pp.
141
143
.
26.
Khaliq
,
A.
, and
Trivedi
,
S. K.
,
2012
, “
Second Law Assessment of a Wet Ethanol Fuelled HCCI Engine Combined With Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022201
.
27.
Doğan
,
B.
,
Erol
,
D.
,
Yaman
,
H.
, and
Kodanli
,
E.
,
2017
, “
The Effect of Ethanol-Gasoline Blends on Performance and Exhaust Emissions of a Spark Ignition Engine Through Exergy Analysis
,”
Appl. Thermal Eng.
,
120
, pp.
433
443
.
28.
Rakopoulos
,
C. D.
, and
Michos
,
C. N.
,
2009
, “
Generation of Combustion Irreversibilities in a Spark Ignition Engine Under Biogas-Hydrogen Mixtures Fueling
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4422
4437
.
29.
Caton
,
J. A.
,
2010
, “
Implications of Fuel Selection for an SI Engine: Results From the First and Second Laws of Thermodynamics
,”
Fuel
,
89
(
11
), pp.
3157
3166
.
30.
Gharehghania
,
A.
,
Hosseinia
,
R.
,
Mirsalima
,
M.
, and
Yusafb
,
T. F.
,
2015
, “
A Comparative Study on the First and Second Law Analysis and Performance Characteristics of a Spark Ignition Engine Using Either Natural Gas or Gasoline
,”
Fuel Process. Technol.
,
158
(
15
), pp.
488
493
.
31.
Hemmati
,
S.
,
Doshi
,
N.
,
Hanover
,
D.
,
Morgan
,
C.
, and
Shahbakhti
,
M.
,
2020
, “
Integrated Cabin Heating and Powertrain Thermal Energy Management for a Connected Hybrid Electric Vehicle
,”
Appl. Energy
,
283
, p.
116353
.
32.
Sok
,
R.
,
Yamaguchi
,
K.
, and
Kusaka
,
J.
,
2020
, “
Prediction of Ultra-Lean Spark Ignition Engine Performances by Quasi-Dimensional Combustion Model With a Refined Laminar Flame Speed Correlation
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032306
.
33.
Lu
,
Y.
,
Li
,
J.
,
Xiong
,
L.
, and
Li
,
B.
,
2019
, “
Simulation and Experimental Study of a Diesel Engine Based on an Electro-Hydraulic FVVA System Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032204
.
34.
Cai
,
L. M.
, and
Pitsch
,
H.
,
2015
, “
Optimized Chemical Mechanism for Combustion of Gasoline Surrogate Fuels
,”
Combust. Flame
,
162
(
5
), pp.
1623
1637
.
35.
Jin
,
C.
,
Yao
,
M. F.
,
Liu
,
H. F.
,
Lee
,
C. F. F.
, and
Ji
,
J.
,
2011
, “
Progress in the Production and Application of n-Butanol as a Biofuel
,”
Renew. Sustain. Energy Rev.
,
15
(
8
), pp.
4080
4106
.
36.
Neshat
,
E.
,
Saray
,
R. K.
, and
Hosseini
,
V.
,
2016
, “
Investigation of the Effect of Reformer Gas on PRFs HCCI Combustion Based on Exergy Analysis
,”
Int. J. Hydrogen Energy
,
41
(
7
), pp.
4278
4295
.
37.
Li
,
T.
,
Wu
,
D.
, and
Xu
,
M.
,
2013
, “
Thermodynamic Analysis of EGR Effects on the First and Second Law Efficiencies of a Boosted Spark-Ignited Direct-Injection Gasoline Engine
,”
Energ. Convers Manag.
,
70
, pp.
130
138
.
38.
Ghojel
,
J. I.
,
2010
, “
Review of the Development and Applications of the Wiebe Function: A Tribute to the Contribution of Ivan Wiebe to Engine Research
,”
Int. J. Engine Res.
,
11
(
4
), pp.
297
312
.
39.
Feng
,
H. Q.
,
Liu
,
D. J.
,
Yang
,
X. X.
,
An
,
M.
,
Zhang
,
W. W.
, and
Zhang
,
X. D.
,
2016
, “
Availability Analysis of Using Iso-Octane/n-Butanol Blends in Spark-Ignition Engines
,”
Renew. Energy
,
96
(
Part A
), pp.
281
294
.
40.
Zhu
,
M. S.
,
1988
,
Exergy Analysis of Energy System
,
Tsinghua University Press
,
Beijing, China
.
41.
Douaud
,
A. M.
, and
Eyzat
,
P.
,
1978
, “
Four-Octane-Number Method for Predicting the Anti-Knock Behavior of Fuels and Engines
,”
SAE Technical Paper 780080
.
42.
Chen
,
L. H.
,
Li
,
T.
,
Yin
,
T.
, and
Zheng
,
B.
,
2016
, “
A Phenomenological Model for Predicting Knock Onset of the Turbocharged Engine Considering the Effects of Multi-Parameters
,”
Chinese Internal Combustion Engine Eng.
,
37
(
4
), pp.
199
205
.
43.
Haq
,
M. Z.
, and
Morshed
,
A.
,
2014
, “
Energy and Exergy Based Analyses of a Multi-Fuelled Si Engine
,”
ASME 2013 Power Conference
,
Boston, MA
,
July 29–Aug. 1, 2013
, pp.
1
10
.
44.
Broustail
,
G.
,
Halter
,
F.
,
Seers
,
P.
,
Moréac
,
G.
, and
Mounaïm-Rousselle
,
C.
,
2013
, “
Experimental Determination of Laminar Burning Velocity for Butanol/Iso-Octane and Ethanol/Iso-Octane Blends for Different Initial Pressures
,”
Fuel
,
106
, pp.
310
317
.
45.
Feng
,
H. Q.
,
Zhang
,
H. D.
,
Wei
,
J. N.
,
Li
,
B. W.
, and
Wang
,
D.
,
2019
, “
The Influence of Mixing Ratio of Low Carbon Mixed Alcohols on Knock Combustion of Spark Ignition Engines
,”
Fuel
,
240
, pp.
339
348
.
46.
Caton
,
J. A.
,
2006
, “
Utilizing a Cycle Simulation to Examine the Use of EGR for a Spark-Ignition Engine Including the Second Law of Thermodynamics
,”
ASME Internal Combustion Engine Division Fall Technical Conference
,
Sacramento, CA
,
Nov. 5–8
, pp.
1
16
.
47.
Ismail
,
S.
, and
Mehta
,
P. S.
,
2011
, “
Evaluation of the Effects of Fuel and Combustion-Related Processes on Exergetic Efficiency
,”
Fuel
,
90
(
5
), pp.
1818
1825
.
48.
Caton
,
J. A.
,
2012
, “
Exergy Destruction During the Combustion Process as Functions of Operating and Design Parameters for a Spark-Ignition Engine
,”
Int. J. Energy Res.
,
36
(
3
), pp.
368
384
.
You do not currently have access to this content.