Abstract
The use of solar energy to preheat natural gas before a city gate station (CGS) for reducing fuel consumption and environmental emissions is investigated in a real CGS. All analyses are conducted with a 1-h time-step throughout the entire year so that seasonal climate changes are accounted for precisely. A thermodynamic analysis of the hybrid system is performed with TRNSYS and verified with THERMOFLEX so as to ensure reliability. In addition, dynamic exergetic, exergoeconomic, and exergoenvironmental analyses for the proposed system are carried out. A life cycle assessment (LCA) based on Eco-indicator 99 is performed using SIMA PRO to compute the environmental impacts for each component of the system. The exergetic, exergoeconomic, and environmental analyses are performed in Engineering Equation Solver (EES) software. To perform the transient exergetic, exergoeconomic, and environmental analyses, the results of the thermodynamic analysis from TRNSYS are automatically imported into the EES code. The advanced exergetic, exergoeconomic, and exergoenvironmental analyses are performed to better determine components that have high potentials for improving the system; potentials are considered based on the exergy destruction, exergetic cost of destruction, and environmental impacts associated with exergy destruction.