Abstract

Source rocks such as shale are highly heterogeneous, consisting of organic matter and various inorganic minerals. Microscopic images suggest that microcracks serve as conduits for the gas released from organic nanopores. The permeability of the shale matrix is primarily attributed to stress-sensitive microcracks that are highly influenced by changes in fluid pressure. As the microcracks are depleted, more gas molecules desorb from the organic nanopores; this, in turn, affects the fluid pressure in the microcracks. Linking the local properties of the organic nanopores to the microcracks allows for a better understanding of the coupling between them, which is necessary for improved modeling. In this research, a multiscale pore network modeling approach is presented to describe the organic material and microcrack system and investigate the large-scale features of gas transport in shale. A multiscale pore network model consisting of clusters of organic pore networks and microcracks was built to examine shale gas transport on a microscopic scale. The organic part of the network model consisted of nano-capillaries interconnected at nanopores. The network accounted for the adsorptive–convective–diffusive transport mechanisms recently derived for a single capillary. This organic nanopore network was hydraulically connected to a single microcrack. Then, the mass balance at each node in the new domain was solved, along with the assumed boundary conditions. Using the information at the nodes, the total flowrate and pressure distribution in the system were obtained as a function of time. The results show that the fluid pressure in the microcrack was primarily sensitive to the content of the organic material and its permeability. Then, the microcracks–organic materials interactions are studied and empirically quantified at larger macroscopic scale of gridblocks. This relationship can be investigated in the laboratory and used in theoretical models to predict shale gas production.

References

1.
Kang
,
S. M.
,
Fathi
,
E.
,
Ambrose
,
R. J.
,
Akkutlu
,
I. Y.
, and
Sigal
,
R. F.
,
2011
, “
Carbon Dioxide Storage Capacity of Organic-Rich Shales
,”
SPE J.
,
16
(
4
), pp.
842
855
. 10.2118/134583-PA
2.
Ambrose
,
R. J.
,
Hartman
,
R. C.
,
Diaz-Campos
,
M.
,
Akkutlu
,
I. Y.
, and
Sondergeld
,
C. H.
,
2012
, “
Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations
,”
SPE J.
,
17
(
1
), pp.
219
229
. 10.2118/131772-PA
3.
Santos
,
J. M.
, and
Akkutlu
,
I. Y.
,
2013
, “
Laboratory Measurement of Sorption Isotherm Under Confining Stress With Pore Volume Effects
,”
SPE J.
,
18
(
5
), pp.
924
931
. 10.2118/162595-PA
4.
He
,
L.
,
Mei
,
H.
,
Hu
,
X.
,
Dejam
,
M.
,
Kou
,
Z.
, and
Zhang
,
M.
,
2019
, “
Advanced Flowing Material Balance To Determine Original Gas in Place of Shale Gas Considering Adsorption Hysteresis
,”
Soc. Pet. Eng.
,
22
(
4
). 10.2118/195581-PA
5.
Fu
,
D.-l.
,
Guosheng
,
X.
,
Tao
,
T.
,
Jian-qiang
,
Q.
, and
Fu
,
Y.
,
2019
, “
Composition of the Shales in Niutitang Formation at Huijunba Syncline and its Influence on Microscopic Pore Structure and Gas Adsorption
,”
SPAWLA
.
6.
Ertekin
,
T.
,
King
,
G. A.
, and
Schwerer
,
F. C.
,
1986
, “
Dynamic Gas Slippage: A Unique Dual-Mechanism Approach to the Flow of Gas in Tight Formations
,”
SPE Form. Eval.
,
1
(
1
), pp.
43
52
. 10.2118/12045-PA
7.
Javadpour
,
F.
,
2009
, “
Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone)
,”
J. Can. Pet. Technol.
,
48
(
08
), pp.
16
21
. 10.2118/09-08-16-DA
8.
Sakhaee-Pour
,
A.
, and
Bryant
,
S.
,
2012
, “
Gas Permeability of Shale
,”
SPE Reservoir Eval. Eng.
,
15
(
4
), pp.
401
409
. 10.2118/146944-PA
9.
Fathi
,
E.
,
Tinni
,
A.
, and
Akkutlu
,
I. Y.
,
2012
, “
Shale Gas Correction to Klinkenberg Slip Theory
,”
SPE Americas Unconventional Resources Conference
,
Pittsburgh, PA
.
10.
Kou
,
R.
,
Alafnan
,
S. F. K.
, and
Akkutlu
,
I. Y.
,
2017
, “
Multi-Scale Analysis of Gas Transport Mechanisms in Kerogen
,”
Transp. Porous Med.
,
116
(
2
), pp.
493
519
. 10.1007/s11242-016-0787-7
11.
Riewchotisakul
,
S.
, and
Akkutlu
,
I. Y.
,
2016
, “
Adsorption Enhanced Transport of Hydrocarbons in Organic Nanopores
,”
SPE J.
,
21
(
6
), pp.
1960
1969
. 10.2118/175107-PA
12.
Sanaei
,
A.
,
Ma
,
Y.
, and
Jamili
,
A.
,
2018
, “
Nanopore Confinement and Pore Connectivity Considerations in Modeling Unconventional Resources
,”
ASME. J. Energy Resour. Technol.
,
141
(
1
), p.
012904
. 10.1115/1.4040791
13.
Alafnan
,
S. F. K.
, and
Akkutlu
,
I. Y.
,
2017
, “
Matrix-Fracture Interactions During Flow in Organic Nanoporous Materials Under Loading
,”
Transp Porous Med.
10.1007/s11242-017-0948-3
14.
Curtis
,
E. M.
,
2013
, “Influence of Thermal Maturity on Organic Shale Microstructure,” http://www.ogs.ou.edu/MEETINGS/Presentations/2013Shale/2013ShaleCurtis.pdf
15.
Cardott
,
B. J.
,
Landis
,
C. R.
, and
Curtis
,
M. E.
,
2015
, “
Post-Oil Solid Bitumen Network in the Woodford Shale, USA—A Potential Primary Migration Pathway
,”
Int. J. Coal Geol.
,
139
, pp.
106
113
. 10.1016/j.coal.2014. 08.012
16.
Zhang
,
R.
,
Ning
,
Z.
,
Yang
,
F.
,
Wang
,
X.
,
Zhao
,
H.
, and
Wang
,
Q.
,
2015
, “
Impacts of Nanopore Structure and Elastic Properties on Stress-Dependent Permeability of Gas Shales
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
1663
1672
. 10.1016/j.jngse.2015.02.001
17.
Hou
,
Y.
,
He
,
S.
,
Wang
,
J.
,
Harris
,
N. B.
,
Cheng
,
C.
,
Li
,
Y.
, and
Pedersen
,
P.
,
2015
, “
Preliminary Study on the Pore Characterization of Lacustrine Shale Reservoirs Using Low Pressure Nitrogen Adsorption and Field Emission Scanning Electron Microscopy Methods: A Case Study of the Upper Jurassic Emuerhe Formation, Mohe Basin, Northeastern China
,”
Can. J. Earth Sci.
,
52
(
5
), pp.
294
306
. 10.1139/cjes-2014-0188
18.
Zhou
,
S.
,
Yan
,
G.
,
Xue
,
H.
,
Guo
,
W.
, and
Li
,
X.
,
2016
, “
2D and 3D Nanopore Characterization of Gas Shale in Longmaxi Formation Based on FIB–SEM
,”
Mar. Pet. Geol.
,
73
, pp.
174
180
. 10.1016/j.marpetgeo.2016.02.033
19.
Li
,
C.
,
Lin
,
M.
,
Ji
,
L.
,
Jiang
,
W.
, and
Cao
,
G.
,
2018
, “
Rapid Evaluation of the Permeability of Organic-Rich Shale Using the 3D Intermingled-Fractal Model
,”
Soc. Pet. Eng.
,
23
(
6
), pp.
2175
2187
. 10.2118/191358-PA
20.
Chiang
,
W.-S.
,
LaManna
,
J. M.
,
Hussey
,
D. S.
,
Jacobson
,
D. L.
,
Liu
,
Y.
,
Zhang
,
J.
, and
Chen
,
J.-H.
,
2018
, Simultaneous Neutron and X-Ray Imaging of 3D Structure of Organic Matter and Fracture in Shales. Society of Petrophysicists and Well-Log Analysts.
21.
Walsh
,
J. B.
,
1965
, “
The Effects of Cracks on the Compressibility of Rock
,”
J Geophys. Res.
,
70
(
2
), pp.
381
389
. 10.1029/JZ070i002p00381
22.
Gangi
,
A. F.
,
1978
, “
Variation of Whole and Fractured Porous Rock Permeability With Confining Pressure
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abst.
,
15
(
5
), pp.
249
257
. 10.1016/0148-9062(78)90957-9
23.
Jiao
,
K.
,
Yao
,
S.
,
Liu
,
C.
,
Gao
,
Y.
,
Wu
,
H.
,
Li
,
M.
, and
Tang
,
Z.
,
2014
, “
The Characterization and Quantitative Analysis of Nanopores in Unconventional Gas Reservoirs Utilizing FESEM-FIB and Image Processing: An Example From the Lower Silurian Longmaxi Shale, Upper Yangtze Region, China
,”
Int. J. Coal Geol.
,
128–129
, pp.
1
11
. 10.1016/j.coal.2014.03.004
24.
Fatt
,
I.
,
1956
, “
The Network Model of Porous Media, I. Capillary Pressure Characteristics
,”
Trans. Am. Inst. Min., Metall., Pet. Eng.
,
207
, pp.
144
159
.
25.
Celia
,
M. A.
,
Reeves
,
P. C.
, and
Ferrand
,
L. A.
,
1995
, “
Recent Advances in Pore Scale Models for Multiphase Flow in Porous Media
,”
Rev. Geophys.
,
33
(
S2
), pp.
1049
1057
. 10.1029/95RG00248
26.
Kwon
,
O.
,
Kronenberg
,
A. K.
,
Gangi
,
A. F.
,
Johnson
,
B.
, and
Herbert
,
B. E.
,
2004
, “
Permeability of Ilite-Bearing Shale: 1. Anisotropy and Effects of Clay Content and Loading
,”
J. Geophys. Res.
,
109
(
B10
), p.
B10205
. 10.1029/2004jb003052
27.
Wasaki
,
A.
, and
Akkutlu
,
I. Y.
,
2015
, “
Permeability of Organic-Rich Shale
,”
SPE J.
,
20
(
6
), pp.
1
384
. 10.2118/170830-PA
28.
Akkutlu
,
I. Y.
,
Baek
,
S.
,
Olorode
,
M. O.
,
Wei
,
P.
,
Tongyi
,
Z.
, and
Shuang
,
A.
,
2017
, “
Shale Resource Assessment in Presence of Nanopore Confinement
,”
Paper 2670808 Presented at the Unconventional Resources Technology Conference (URTeC)
,
Austin, TX
,
July 24–26
.
29.
Zhang
,
M.
, and
Ayala
,
L. F.
,
2018
, “
A General Boundary Integral Solution for Fluid Flow Analysis in Reservoirs With Complex Fracture Geometries
,”
ASME. J. Energy Resour. Technol.
,
140
(
5
), p.
052907
. 10.1115/1.4038845
30.
Teng
,
B.
,
Cheng
,
L.
,
Huang
,
S.
, and
Andy Li
,
H.
,
2018
, “
Production Forecasting for Shale Gas Reservoirs With Fast Marching-Succession of Steady States Method
,”
ASME. J. Energy Resour. Technol.
,
140
(
3
), p.
032913
. 10.1115/1.4038781
31.
Jiang
,
Y.
, and
Dahi-Taleghani
,
A.
,
2018
, “
Modified Extended Finite Element Methods for Gas Flow in Fractured Reservoirs: A Pseudo-Pressure Approach
,”
ASME. J. Energy Resour. Technol.
,
140
(
7
), p.
073101
. 10.1115/1.4039327
32.
Tan
,
Y.
,
Li
,
H.
,
Zhou
,
X.
,
Jiang
,
B.
,
Wang
,
Y.
, and
Zhang
,
N.
,
2018
, “
A Semi-Analytical Model for Predicting Horizontal Well Performances in Fractured Gas Reservoirs With Bottom-Water and Different Fracture Intensities
,”
ASME. J. Energy Resour. Technol.
,
140
(
10
), p.
102905
. 10.1115/1.4040201
33.
Song
,
W.
,
Yao
,
J.
,
Li
,
Y.
,
Sun
,
H.
,
Zhang
,
L.
,
Yang
,
Y.
,
Zhao
,
J.-l.
, and
Sui
,
H.
,
2016
, “
Apparent Gas Permeability in an Organic-Rich Shale Reservoir
,”
Fuel
,
181
, pp.
973
984
. 10.1016/j.fuel.2016.05.011
34.
Chen
,
S.
,
Han
,
Y.
,
Fu
,
C.
,
Zhang
,
H.
,
Zhu
,
Y.
, and
Zuo
,
Z.
,
2016
, “
Micro and Nano-Size Pores of Clay Minerals in Shale Reservoirs: Implication for the Accumulation of Shale Gas
,”
Sediment. Geol.
,
342
, pp.
180
190
. 10.1016/j.sedgeo.2016.06.022
35.
Carr
,
N. L.
,
Kobayashi
,
R.
, and
Burrows
,
D. B.
,
1954
, “
Viscosity of Hydrocarbon Gases Under Pressure
,”
J. Pet. Technol.
,
6
(
10
), pp.
47
55
. 10.2118/297-G
36.
Katz
,
D. L.
,
1959
,
Handbook of Natural Gas Engineering
,
McGraw-Hill Higher Education
,
New York
.
37.
Hsieh
,
T.-H.
,
Huang
,
Y.-S.
, and
Shen
,
M.-Y.
,
2015
, “
Mechanical Properties and Toughness of Carbon Aerogel/Epoxy Polymer Composites
,”
J. Mater. Sci.
,
50
(
8
), pp.
3258
3266
. 10.1007/s10853-015-8897-0
You do not currently have access to this content.