Abstract

Geological sequestration of carbon dioxide (CO2) in deep saline aquifers is one of the most promising technologies for large-scale CO2 mitigation. Temperature can play a significant role in the ensuing geochemistry, affecting equilibria in a multicomponent system and impacting reactive transport processes. The objectives of this study are to quantify the effect of temperature on storage efficiency, solubility trapping of CO2, pH of residual brine, and changes in the mineralogy and porosity. Using toughreact 3.3 (a reactive transport simulator), we have simulated the injection of CO2 into a heterogeneous layered carbonate formation for a period of 50 years, followed by a 50-year equilibration period with no injection. Mineralogy and physical properties of the simulated aquifer are based on a dolomitic limestone aquifer located within the South Florida Basin. Simulations were conducted for seven values of temperature. Density of supercritical CO2 decreases with an increase in temperature, which leads to higher buoyancy at elevated temperatures. Therefore, the storage efficiency of the aquifer decreases as temperature increases. Simulation results indicate that an increase in temperature from 35 °C to 95 °C results in a 35% decrease in storage efficiency. However, surprisingly, solubility trapping of CO2 increases with an increase in temperature because the interfacial area increases with temperature. Temperature effects on pH and on porosity change (due to mineral dissolution and precipitation) are small. The study can be helpful in screening a reservoir for geological carbon storage based on the formation temperature.

References

1.
Lackner
,
K. S.
,
2003
, “
A Guide to CO2 Sequestration
,”
Science
,
300
(
5626
), pp.
1677
1678
. 10.1126/science.1079033
2.
Bachu
,
S.
,
2008
, “
CO2 Storage in Geological Media: Role, Means, Status and Barriers to Deployment
,”
Prog. Energy Combust. Sci.
,
34
(
2
), pp.
254
273
. 10.1016/j.pecs.2007.10.001
3.
Haszeldine
,
R. S.
,
2009
, “
Carbon Capture and Storage: How Green Can Black Be?
,”
Science
,
325
(
5948
), pp.
1647
1652
. 10.1126/science.1172246
4.
Nogueira
,
M.
, and
Mamora
,
D. D.
,
2008
, “
Effect of Flue-Gas Impurities on the Process of Injection and Storage of CO2 in Depleted Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
130
(
1
), p.
013301
. 10.1115/1.2825174
5.
Metz
,
B.
,
Davidson
,
O.
,
De Coninck
,
H. C.
,
Loos
,
M.
, and
Meyer
,
L. A.
,
2005
,
IPCC Special Report on Carbon Dioxide Capture and Storage
,
Cambridge University Press
,
Cambridge, UK and New York
.
6.
White
,
C. M.
,
Strazisar
,
B. R.
,
Granite
,
E. J.
,
Hoffman
,
J. S.
, and
Pennline
,
H. W.
,
2003
, “
Separation and Capture of CO2 From Large Stationary Sources and Sequestration in Geological Formations—Coalbeds and Deep Saline Aquifers
,”
J. Air Waste Manage. Assoc.
,
53
(
6
), pp.
645
715
. 10.1080/10473289.2003.10466206
7.
Xu
,
T.
,
Apps
,
J. A.
, and
Pruess
,
K.
,
2004
, “
Numerical Simulation of CO2 Disposal by Mineral Trapping in Deep Aquifers
,”
Appl. Geochem.
,
19
(
6
), pp.
917
936
. 10.1016/j.apgeochem.2003.11.003
8.
Rosenbauer
,
R. J.
,
Koksalan
,
T.
, and
Palandri
,
J. L.
,
2005
, “
Experimental Investigation of CO2–Brine–Rock Interactions at Elevated Temperature and Pressure: Implications for CO2 Sequestration in Deep-Saline Aquifers
,”
Fuel Process. Technol.
,
86
(
14–15
), pp.
1581
1597
. 10.1016/j.fuproc.2005.01.011
9.
Olabode
,
A.
, and
Radonjic
,
M.
,
2014
, “
Shale Caprock/Acidic Brine Interaction in Underground CO2 Storage
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042901
. 10.1115/1.4027567
10.
Al-Ameri
,
W. A.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M.
,
2016
, “
Long-Term Effects of CO2 Sequestration on Rock Mechanical Properties
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012201
. 10.1115/1.4032011
11.
Kharaka
,
Y. K.
,
Cole
,
D. R.
,
Hovorka
,
S. D.
,
Gunter
,
W. D.
,
Knauss
,
K. G.
, and
Freifeld
,
B. M.
,
2006
, “
Gas-Water-Rock Interactions in Frio Formation Following CO2 Injection: Implications for the Storage of Greenhouse Gases in Sedimentary Basins
,”
Geology
,
34
(
7
), pp.
577
580
. 10.1130/G22357.1
12.
Xu
,
T.
,
Kharaka
,
Y. K.
,
Doughty
,
C.
,
Freifeld
,
B. M.
, and
Daley
,
T. M.
,
2010
, “
Reactive Transport Modeling to Study Changes in Water Chemistry Induced by CO2 Injection at the Frio-I Brine Pilot
,”
Chem. Geol.
,
271
(
3–4
), pp.
153
164
. 10.1016/j.chemgeo.2010.01.006
13.
Daneshfar
,
J.
,
Hughes
,
R. G.
, and
Civan
,
F.
,
2009
, “
Feasibility Investigation and Modeling Analysis of CO2 Sequestration in Arbuckle Formation Utilizing Salt Water Disposal Wells
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
023301
. 10.1115/1.3124115
14.
Mohamed
,
I. M.
,
He
,
J.
, and
Nasr-El-Din
,
H. A.
,
2013
, “
Experimental Analysis of CO2 Injection on Permeability of Vuggy Carbonate Aquifers
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013301
. 10.1115/1.4007799
15.
Gaus
,
I.
,
2010
, “
Role and Impact of CO2–Rock Interactions During CO2 Storage in Sedimentary Rocks
,”
Int. J. Greenhouse Gas Control
,
4
(
1
), pp.
73
89
. 10.1016/j.ijggc.2009.09.015
16.
Duan
,
Z.
, and
Sun
,
R.
,
2003
, “
An Improved Model Calculating CO2 Solubility in Pure Water and Aqueous NaCl Solutions From 273 to 533 K and From 0 to 2000 bar
,”
Chem. Geol.
,
193
(
3–4
), pp.
257
271
. 10.1016/S0009-2541(02)00263-2
17.
Spycher
,
N.
, and
Pruess
,
K.
,
2005
, “
CO2-H2O Mixtures in the Geological Sequestration of CO2. II. Partitioning in Chloride Brines at 12–100 °C and up to 600 bar
,”
Geochim. Cosmochim. Acta
,
69
(
13
), pp.
3309
3320
. 10.1016/j.gca.2005.01.015
18.
Akinfiev
,
N. N.
, and
Diamond
,
L. W.
,
2010
, “
Thermodynamic Model of Aqueous CO2–H2O–NaCl Solutions From −22 to 100 °C and From 0.1 to 100 MPa
,”
Fluid Phase Equilib.
,
295
(
1
), pp.
104
124
. 10.1016/j.fluid.2010.04.007
19.
Zhao
,
H.
,
Fedkin
,
M. V.
,
Dilmore
,
R. M.
, and
Lvov
,
S. N.
,
2015
, “
Carbon Dioxide Solubility in Aqueous Solutions of Sodium Chloride at Geological Conditions: Experimental Results at 323.15, 373.15, and 423.15 K and 150 bar and Modeling up to 573.15 K and 2000 bar
,”
Geochim. Cosmochim. Acta
,
149
, pp.
165
189
. 10.1016/j.gca.2014.11.004
20.
Marini
,
L.
,
2006
,
Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and Reaction Path Modeling
, Vol.
11
,
Elsevier
,
New York
.
21.
Jun
,
Y. S.
,
Giammar
,
D. E.
, and
Werth
,
C. J.
,
2013
, “
Impacts of Geochemical Reactions on Geologic Carbon Sequestration
,”
Environ. Sci. Technol.
,
47
(
1
), pp.
3
8
. 10.1021/es3027133
22.
Lowell
,
R. P.
,
Kolandaivelu
,
K.
, and
Rona
,
P. A.
,
2014
,
Hydrothermal Activity, Reference Module in Earth Systems and Environmental Sciences
,
Elsevier
.
23.
Middleton
,
R. S.
,
Keating
,
G. N.
,
Stauffer
,
P. H.
,
Jordan
,
A. B.
,
Viswanathan
,
H. S.
,
Kang
,
Q. J.
,
Carey
,
J. W.
,
Mulkey
,
M. L.
,
Sullivan
,
E. J.
,
Chu
,
S. P.
,
Esposito
,
R.
, and
Meckel
,
T. A.
,
2012
, “
The Cross-Scale Science of CO2 Capture and Storage: From Pore Scale to Regional Scale
,”
Energy Environ. Sci.
,
5
(
6
), pp.
7328
7345
. 10.1039/c2ee03227a
24.
Xu
,
T.
,
Sonnenthal
,
E.
,
Spycher
,
N.
, and
Zheng
,
L.
,
2014
,
TOUGHREACT V3.0-OMP Reference Manual: A Parallel Simulation Program for Non-Isothermal Multiphase Geochemical Reactive Transport
,
University of California
,
Berkeley, CA
.
25.
Roberts-Ashby
,
T. L.
, and
Ashby
,
B. N.
,
2016
, “
A Method for Examining the Geospatial Distribution of CO2 Storage Resources Applied to the Pre-Punta Gorda Composite and Dollar Bay Reservoirs of the South Florida Basin, U.S.A
,”
Mar. Pet. Geol.
,
77
, pp.
141
159
. 10.1016/j.marpetgeo.2016.06.010
26.
Roberts-Ashby
,
T. L.
,
Brennan
,
S. T.
,
Merrill
,
M. D.
,
Blondes
,
M. S.
,
Freeman
,
P. A.
,
Cahan
,
S. M.
,
DeVera
,
C. A.
, and
Lohr
,
C. D.
,
2015
, “Geologic Framework for the National Assessment of Carbon Dioxide Storage Resources—South Florida Basin,”
Chap. L Geologic Framework for the National Assessment of Carbon Dioxide Storage Resources
,
P. D.
Warwick
, and
M. D.
Corum
, eds.,
U.S. Geological Survey
,
Reston, VA
, p.
22
.
27.
Pollastro
,
R. M.
,
Schenk
,
C. J.
, and
Charpentier
,
R. R.
,
2001
, “
Assessment of Undiscovered Oil and Gas in the Onshore and State Waters Portion of the South Florida Basin, Florida—USGS Province 50
,”
USGS Digital Data Series 69-A, National Assessment of Oil and Gas Project: Petroleum Systems and Assessment of the South Florida Basin, Supersedes USGS Open-File Report 00-317
.
28.
Wolery
T. J.
,
Jove-Colon
C. F.
, and
Jareck
,
R. L.
,
2007
, “
Qualification of Thermodynamic Data for Geochemical Modeling of Mineral-Water Interactions in Dilute Systems
,”
ANL-WIS-GS-000003 REV 01
,
Las Vegas, Nevada
:
Sandia National Laboratories
.
ACC: DOC.20070619.0007
.
29.
Van Genuchten
,
M. T.
,
1980
, “
A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils 1
,”
Soil Sci. Soc. Am. J.
,
44
(
5
), pp.
892
898
. 10.2136/sssaj1980.03615995004400050002x
30.
André
,
L.
,
Audigane
,
P.
,
Azaroual
,
M.
, and
Menjoz
,
A.
,
2007
, “
Numerical Modeling of Fluid–Rock Chemical Interactions at the Supercritical CO2–Liquid Interface During CO2 Injection Into a Carbonate Reservoir, the Dogger Aquifer (Paris Basin, France)
,”
Energy Convers. Manage.
,
48
(
6
), pp.
1782
1797
. 10.1016/j.enconman.2007.01.006
31.
Van der Meer
,
L. G. H.
,
1995
, “
The CO2 Storage Efficiency of Aquifers
,”
Energy Convers. Manage.
,
36
(
6–9
), pp.
513
518
. 10.1016/0196-8904(95)00056-J
32.
Okwen
,
R.
,
Stewart
,
M.
, and
Cunningham
,
J.
,
2011
, “
Effect of Well Orientation (Vertical vs. Horizontal) and Well Length on the Injection of CO2 in Deep Saline Aquifers
,”
Transp. Porous Media
,
90
(
1
), pp.
219
232
. 10.1007/s11242-010-9686-5
33.
Gunter
,
W. D.
,
Perkins
,
E. H.
, and
Hutcheon
,
I.
,
2000
, “
Aquifer Disposal of Acid Gases: Modelling of Water-Rock Reactions for Trapping of Acid Wastes
,”
Appl. Geochem.
,
15
(
8
), pp.
1085
1095
. 10.1016/S0883-2927(99)00111-0
34.
Xu
,
T.
,
Apps
,
J. A.
, and
Pruess
,
K.
,
2005
, “
Mineral Sequestration of Carbon Dioxide in a Sandstone-Shale System
,”
Chem. Geol.
,
217
(
3–4
), pp.
295
318
. 10.1016/j.chemgeo.2004.12.015
35.
Kihm
,
J.-H.
,
Kim
,
J. M.
,
Wang
,
S.
, and
Xu
,
T.
,
2012
, “
Hydrogeochemical Numerical Simulation of Impacts of Mineralogical Compositions and Convective Fluid Flow on Trapping Mechanisms and Efficiency of Carbon Dioxide Injected Into Deep Saline Sandstone Aquifers
,”
J. Geophys. Res. Solid Earth
,
117
(
B6
), p.
B06024
. 10.1029/2011JB008906
You do not currently have access to this content.