Abstract

Accurately characterizing hydraulic fracture network and tight oil reservoir properties can lay the foundation for the production forecast and development design. In this work, we proposed a history matching framework for tight oil. We first use the Hough transform method to characterize complex fracture network from microseismic data. Then, we put the fracture network into an embedded discrete fracture model (EDFM) to build a tight oil reservoir simulation model. After that, we further couple whale optimization algorithm (WOA) and EDFM to match the field production data. In this way, we can accurately estimate reservoir properties, including matrix permeability and porosity, as well as fracture permeability. We apply the framework to two-field applications in China. One is fractured vertical well in the Songliao Basin of Daqing oilfield. The other one is multi-stage fractured horizontal well in the Jimsar Sag of the Xinjiang oilfield. Results show that if we do not consider tight oil characteristics, the estimated fracture permeability, matrix permeability, and matrix porosity will underestimate 73%, 20%, and 47%, respectively. Because we apply WOA to history matching for the first time, we compare the performance of WOA with ensemble–smoother with multiple data–assimilation (ES-MDA). When we fit six parameters, ES-MDA performs better than WOA. However, when we fit three parameters, WOA performs better than ES-MDA. In addition, for engineering problem, WOA performs well on both convergence speed and stability. Therefore, WOA is recommended in the future application of history matching.

References

1.
Munasib
,
A.
, and
Rickman
,
D. S.
,
2015
, “
Regional Economic Impacts of the Shale Gas and Tight Oil Boom: A Synthetic Control Analysis
,”
Reg. Sci. Urban. Econ.
,
50
, pp.
1
17
. 10.1016/j.regsciurbeco.2014.10.006
2.
Yu
,
W.
,
Lashgari
,
H. R.
,
Wu
,
K.
, and
Sepehrnoori
,
K.
,
2015
, “
CO2 Injection for Enhanced Oil Recovery in Bakken Tight Oil Reservoirs
,”
Fuel
,
159
, pp.
354
363
. 10.1016/j.fuel.2015.06.092
3.
Chen
,
Z.
,
Jeffrey
,
R. G.
,
Zhang
,
X.
, and
Kear
,
J.
,
2017
, “
Finite-Element Simulation of a Hydraulic Fracture Interacting With a Natural Fracture
,”
SPE J.
,
22
(
1
), pp.
219
234
. 10.2118/176970-PA
4.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042905
. 10.1115/1.4028690
5.
Ren
,
G.
,
Jiang
,
J.
, and
Younis
,
R. M.
,
2018
, “
A Model for Coupled Geomechanics and Multiphase Flow in Fractured Porous Media Using Embedded Meshes
,”
Adv. Water Resour.
,
122
, pp.
113
130
. 10.1016/j.advwatres.2018.09.017
6.
Xu
,
S.
,
Feng
,
Q.
,
Li
,
Y.
, and
Wang
,
S.
,
2019
, “
An Integrated Workflow for Fracture Propagation and Reservoir Simulation in Tight Oil
,”
J. Petrol. Sci. Eng.
,
179
, pp.
1159
1172
. 10.1016/j.petrol.2019.05.007
7.
Daniel Obinna
,
E.
, and
Hassan
,
D.
,
2016
, “
Characterizing Tight Oil Reservoirs With Dual- and Triple-Porosity Models
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032801
. 10.1115/1.4032520
8.
Wu
,
F.
,
Yan
,
Y.
, and
Yin
,
C.
,
2017
, “
Real-Time Microseismic Monitoring Technology for Hydraulic Fracturing in Shale Gas Reservoirs: A Case Study From the Southern Sichuan Basin
,”
Natural Gas Industry B
,
4
(
1
), pp.
68
71
. 10.1016/j.ngib.2017.07.010
9.
Fan
,
D.
, and
Ettehadtavakkol
,
A.
,
2017
, “
Semi-Analytical Modeling of Shale Gas Flow Through Fractal Induced Fracture Networks With Microseismic Data
,”
Fuel
,
193
, pp.
444
459
. 10.1016/j.fuel.2016.12.059
10.
Belayouni
,
N.
,
Gesret
,
A.
,
Daniel
,
G.
, and
Noble
,
M.
,
2015
, “
Microseismic Event Location Using the First and Reflected Arrivals
,”
Geophysics
,
80
(
6
), pp.
WC133
WC143
. 10.1190/geo2015-0068.1
11.
Fisher
,
M. K.
,
Heinze
,
J. R.
,
Harris
,
C. D.
,
Davidson
,
B. M.
,
Wright
,
C. A.
, and
Dunn
,
K. P.
,
2004
, “
Optimizing Horizontal Completion Techniques in the Barnett Shale Using Microseismic Fracture Mapping
,”
SPE-90051-MS Paper Presented at SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
.
12.
Zhang
,
K.
,
Ma
,
X.
,
Li
,
Y.
,
Wu
,
H.
,
Cui
,
C.
,
Zhang
,
X.
,
Zhang
,
H.
, and
Yao
,
J.
,
2018
, “
Parameter Prediction of Hydraulic Fracture for Tight Reservoir Based on Micro-Seismic and History Matching
,”
Fractals
,
26
(
2
), p.
1840009
. 10.1142/S0218348X18400091
13.
Lu
,
L.
, and
Zhang
,
D.
,
2015
, “
Assisted History Matching for Fractured Reservoirs by Use of Hough-Transform-Based Parameterization
,”
SPE J.
,
20
(
5
), pp.
942
961
. 10.2118/176024-PA
14.
Yu
,
X.
,
Rutledge
,
J.
,
Leaney
,
S.
, and
Maxwell
,
S.
,
2016
, “
Discrete-Fracture-Network Generation From Microseismic Data by Use of Moment-Tensor and Event-Location-Constrained Hough Transforms
,”
SPE J.
,
21
(
1
), pp.
221
232
. 10.2118/168582-PA
15.
Yao
,
M.
,
Chang
,
H.
,
Li
,
X.
, and
Zhang
,
D.
,
2018
, “
Tuning Fractures With Dynamic Data
,”
Water Resour. Res.
,
54
(
2
), pp.
680
707
. 10.1002/2017WR022019
16.
Nejadi
,
S.
,
Trivedi
,
J. J.
, and
Leung
,
J.
,
2017
, “
History Matching and Uncertainty Quantification of Discrete Fracture Network Models in Fractured Reservoirs
,”
J. Petrol. Sci. Eng.
,
152
, pp.
21
32
. 10.1016/j.petrol.2017.01.048
17.
Patterson
,
R.
,
Yu
,
W.
, and
Wu
,
K.
,
2018
, “
Integration of Microseismic Data, Completion Data, and Production Data to Characterize Fracture Geometry in the Permian Basin
,”
J. Nat. Gas Sci. Eng.
,
56
, pp.
62
71
. 10.1016/j.jngse.2018.05.025
18.
Zhang
,
L.
,
Zhang
,
X.
,
Zhang
,
K.
,
Zhang
,
H.
, and
Yao
,
J.
,
2017
, “
Inversion of Fractures With Combination of Production Performance and In-Situ Stress Analysis Data
,”
J. Nat. Gas Sci. Eng.
,
42
, pp.
232
242
. 10.1016/j.jngse.2017.03.002
19.
Elahi
,
S. H.
, and
Jafarpour
,
B.
,
2018
, “
Dynamic Fracture Characterization From Tracer-Test and Flow-Rate Data With Ensemble Kalman Filter
,”
SPE J.
,
23
(
02
), pp.
449
466
. 10.2118/189449-PA
20.
Zhang
,
W.
,
Feng
,
Q.
,
Wang
,
S.
, and
Xing
,
X.
,
2019
, “
Oil Diffusion in Shale Nanopores: Insight of Molecular Dynamics Simulation
,”
J. Mol. Liq.
,
290
, p.
111183
. 10.1016/j.molliq.2019.111183
21.
Prada
,
A.
, and
Civan
,
F.
,
1999
, “
Modifcation of Darcy’s Law for the Threshold Pressure Gradient
,”
J. Petrol. Sci. Eng.
,
22
(
4
), pp.
237
240
. 10.1016/S0920-4105(98)00083-7
22.
Zeng
,
B.
,
Cheng
,
L.
, and
Li
,
C.
,
2011
, “
Low Velocity Non-Linear Fow in Ultra-Low Permeability Reservoir
,”
J. Petrol. Sci. Eng.
,
80
(
1
), pp.
1
6
. 10.1016/j.petrol.2011.10.006
23.
Wenchao
,
F.
,
Jiang
,
H.
,
Junjian
,
L.
,
Qing
,
W.
,
Killough
,
J.
,
Linkai
,
L.
,
Yongcan
,
P.
, and
Hanxu
,
Y.
,
2017
, “
A Numerical Simulation Model for Multi-Scale Flow in Tight Oil Reservoirs
,”
Petrol. Explor. Dev.
,
44
(
3
), pp.
446
453
. 10.1016/S1876-3804(17)30051-4
24.
Xu
,
J.
,
Chen
,
B.
,
Sun
,
B.
, and
Jiang
,
R.
,
2019
, “
Flow Behavior of Hydraulic Fractured Tight Formations Considering Pre-Darcy Flow Using EDFM
,”
Fuel
,
241
, pp.
1145
1163
. 10.1016/j.fuel.2018.12.009
25.
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2014
, “
Optimization of Well Spacing for Bakken Tight Oil Reservoirs
,”
URTEC-1922108-MS Presented at Unconventional Resources Technology Conference
,
Denver, CO
,
Aug. 25–27
.
26.
Ren
,
G.
,
Jiang
,
J.
, and
Younis
,
R. M.
,
2016
, “
A Fully Coupled XFEM-EDFM Model for Multiphase Flow and Geomechanics in Fractured Tight Gas Reservoirs
,”
Procedia Comput. Sci.
,
80
, pp.
1404
1415
. 10.1016/j.procs.2016.05.449
27.
Karimi-Fard
,
M.
,
Durlofsky
,
L. J.
, and
Aziz
,
K.
,
2003
, “
An Efficient Discrete Fracture Model Applicable for General Purpose Reservoir Simulators
,”
SPE-79699-MS Paper Presented at SPE Reservoir Simulation Symposium
,
Houston, TX
,
Feb. 3–5
.
28.
Li
,
L.
, and
Lee
,
S. H.
,
2008
, “
Efficient Field-Scale Simulation of Black Oil in a Naturally Fractured Reservoir Through Discrete Fracture Networks and Homogenized Media
,”
SPE Reserv. Eval. Eng.
,
11
(
4
), pp.
750
758
. 10.2118/103901-PA
29.
Sandve
,
T. H.
,
Berre
,
I.
, and
Nordbotten
,
J. M.
,
2012
, “
An Efficient Multi-Point Flux Approximation Method for Discrete Fracture–Matrix Simulations
,”
J. Comput. Phys.
,
231
(
9
), pp.
3784
3800
. 10.1016/j.jcp.2012.01.023
30.
Feng
,
Q.
,
Xu
,
S.
,
Wang
,
S.
,
Li
,
Y.
,
Gao
,
F.
, and
Xu
,
Y.
,
2019
, “
Apparent Permeability Model for Shale Oil With Multiple Mechanisms
,”
J. Petrol. Sci. Eng.
,
175
, pp.
814
827
. 10.1016/j.petrol.2019.01.038
31.
Jiang
,
J.
, and
Younis
,
R. M.
,
2017
, “
An Improved Projection-Based Embedded Discrete Fracture Model (pEDFM) for Multiphase Flow in Fractured Reservoirs
,”
Adv. Water Resour.
,
109
, pp.
267
289
. 10.1016/j.advwatres.2017.09.017
32.
Shakiba
,
M.
,
de Araujo Cavalcante Filho
,
J. S.
, and
Sepehrnoori
,
K.
,
2018
, “
Using Embedded Discrete Fracture Model (EDFM) in Numerical Simulation of Complex Hydraulic Fracture Networks Calibrated by Microseismic Monitoring Data
,”
J. Nat. Gas Sci. Eng.
,
55
, pp.
495
507
. 10.1016/j.jngse.2018.04.019
33.
Ding
,
D. Y.
,
Farah
,
N.
,
Bourbiaux
,
B.
,
Wu
,
Y. S.
, and
Mestiri
,
I.
,
2018
, “
Simulation of Matrix/Fracture Interaction in Low-Permeability Fractured Unconventional Reservoirs
,”
SPE J.
,
23
(
4
), pp.
1
389
. 10.2118/182608-PA
34.
Chai
,
Z.
,
Tang
,
H.
,
He
,
Y.
,
Killough
,
J.
, and
Wang
,
Y.
,
2018
, “
Uncertainty Quantification of the Fracture Network With a Novel Fractured Reservoir Forward Model
,”
SPE-191395-MS Presented at SPE Annual Technical Conference and Exhibition
,
Dallas, TX,
Sept. 24–26
.
35.
Tripoppoom
,
S.
,
Yu
,
W.
,
Huang
,
H.
,
Sepehrnoori
,
K.
,
Song
,
W.
, and
Dachanuwattana
,
S.
,
2019
, “
A Practical and Efficient Iterative History Matching Workflow for Shale Gas Well Coupling Multiple Objective Functions, Multiple Proxy-Based MCMC and EDFM
,”
J. Petrol. Sci. Eng.
,
176
, pp.
594
611
. 10.1016/j.petrol.2019.01.080
36.
Tan
,
T. B.
,
1995
, “
A Computationally Efficient Gauss-Newton Method for Automatic History Matching
,”
SPE-29100-MS Paper Presented at SPE Reservoir Simulation Symposium
,
San Antonio, TX,
Feb. 12–15
.
37.
Asadollahi
,
M.
, and
Naevdal
,
G.
,
2009
, “
Waterflooding Optimization Using Gradient Based Methods
,”
SPE-125331-MS Paper Presented at SPE/EAGE Reservoir Characterization and Simulation Conference
,
Abu Dhabi, UAE
,
Oct. 19–21
.
38.
Wang
,
X.
,
Haynes
,
R. D.
,
He
,
Y.
, and
Feng
,
Q.
,
2019
, “
Well Control Optimization Using Derivative-Free Algorithms and a Multiscale Approach
,”
Comput. Chem. Eng.
,
123
, pp.
12
33
. 10.1016/j.compchemeng.2018.12.004
39.
Holland
,
J. H.
,
1992
, “
Genetic Algorithms
,”
Sci. Am.
,
267
, pp.
66
72
.
40.
Rechenberg
,
I.
,
1978
, “Evolutionsstrategien,”
Simulationsmethoden in der Medizin und Biologie
, Vol.
8
,
B.
Schneider
, and
U.
Ranft
, eds.,
Springer
,
Berlin Heidelberg
, pp.
83
114
.
41.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution–A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Glob. Optim.
,
11
(
4
), pp.
341
359
. 10.1023/A:1008202821328
42.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
80
. 10.1126/science.220.4598.671
43.
Rashedi
,
E.
,
Nezamabadi-Pour
,
H.
, and
Saryazdi
,
S.
,
2009
, “
GSA: A Gravitational Search Algorithm
,”
Inf. Sci.
,
179
(
13
), pp.
2232
2248
. 10.1016/j.ins.2009.03.004
44.
van den Bergh
,
F.
, and
Engelbrecht
,
A.
,
2006
, “
A Study of Particle Swarm Optimization Particle Trajectories
,”
Inf. Sci.
,
176
(
8
), pp.
937
971
. 10.1016/j.ins.2005.02.003
45.
Mirjalili
,
S.
, and
Lewis
,
A.
,
2016
, “
The Whale Optimization Algorithm
,”
Adv. Eng. Softw.
,
95
, pp.
51
67
. 10.1016/j.advengsoft.2016.01.008
46.
Emerick
,
A. A.
, and
Reynolds
,
A. C.
,
2013
, “
Ensemble Smoother With Multiple Data Assimilation
,”
Comput. Geosci-UK.
,
55
, pp.
3
15
. 10.1016/j.cageo.2012.03.011
47.
Kaveh
,
A.
, and
Ghazaan
,
M. I.
,
2017
, “
Enhanced Whale Optimization Algorithm for Sizing Optimization of Skeletal Structures
,”
Mech. Based Des. Struct.
,
45
(
3
), pp.
345
362
. 10.1080/15397734.2016.1213639
48.
Mostafa
,
A.
,
Hassanien
,
A. E.
,
Houseni
,
M.
, and
Hefny
,
H.
,
2017
, “
Liver Segmentation in MRI Images Based on Whale Optimization Algorithm
,”
Multimed. Tools. Appl.
,
76
(
23
), pp.
24931
24954
. 10.1007/s11042-017-4638-5
49.
Prakash
,
D. B.
, and
Lakshminarayana
,
C.
,
2017
, “
Optimal Siting of Capacitors in Radial Distribution Network Using Whale Optimization Algorithm
,”
Alex. Eng. J.
,
56
(
4
), pp.
499
509
. 10.1016/j.aej.2016.10.002
50.
Prakash
,
D. B.
, and
Lakshminarayana
,
C.
,
2018
, “
Multiple DG Placements in Radial Distribution System for Multi Objectives Using Whale Optimization Algorithm
,”
Alex. Eng. J.
,
57
(
4
), pp.
2797
2806
. 10.1016/j.aej.2017.11.003
51.
Oliva
,
D.
,
El Aziz
,
M. A.
, and
Hassanien
,
A. E.
,
2017
, “
Parameter Estimation of Photovoltaic Cells Using an Improved Chaotic Whale Optimization Algorithm
,”
Appl. Energ.
,
200
, pp.
141
154
. 10.1016/j.apenergy.2017.05.029
52.
El Aziz
,
M. A.
,
Ewees
,
A. A.
, and
Hassanien
,
A. E.
,
2017
, “
Whale Optimization Algorithm and Moth-Flame Optimization for Multilevel Thresholding Image Segmentation
,”
Expert. Syst. Appl.
,
83
, pp.
242
256
. 10.1016/j.eswa.2017.04.023
53.
Sun
,
J.
,
Gamboa
,
E. S.
,
Schechter
,
D.
, and
Rui
,
Z.
,
2016
, “
An Integrated Workflow for Characterization and Simulation of Complex Fracture Networks Utilizing Microseismic and Horizontal Core Data
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1347
1360
. 10.1016/j.jngse.2016.08.024
54.
Xie
,
J.
,
Yang
,
C.
,
Gupta
,
N.
,
King
,
M. J.
, and
Datta-Gupta
,
A.
,
2015
, “
Integration of Shale-Gas-Production Data and Microseismic for Fracture and Reservoir Properties With the Fast Marching Method
,”
SPE J.
,
20
(
2
), pp.
347
359
. 10.2118/161357-PA
55.
Hough
,
P. V. C.
,
1962,
Method and Means for Recognizing Complex Patterns
,” U.S. Patent No. 3,069,654.
Washington, DC
:
U.S. Patent and Trademark Office
.
56.
Nguyen
,
T. T.
,
Dai Pham
,
X.
, and
Jeon
,
J. W.
,
2008
, “
An Improvement of the Standard Hough Transform to Detect Line Segments
,”
2008 IEEE International Conference on Industrial Technology
,
Chengdu, China
,
Apr. 21–24
, pp.
1
6
.
57.
Matas
,
J.
,
Galambos
,
C.
, and
Kittler
,
J.
,
2000
, “
Robust Detection of Lines Using the Progressive Probabilistic Hough Transform
,”
Comput. Vis. Image. Und.
,
78
(
1
), pp.
119
137
. 10.1006/cviu.1999.0831
58.
Jiang
,
L.
,
2012
, “
Efficient Randomized Hough Transform for Circle Detection Using Novel Probability Sampling and Feature Points
,”
Optik
,
123
(
20
), pp.
1834
1840
. 10.1016/j.ijleo.2012.02.045
59.
Wang
,
S.
,
Feng
,
Q.
,
Javadpour
,
F.
,
Hu
,
Q.
, and
Wu
,
K.
,
2019
, “
Competitive Adsorption of Methane and Ethane in Montmorillonite Nanopores of Shale at Supercritical Conditions: A Grand Canonical Monte Carlo Simulation Study
,”
Chem. Eng. J.
,
355
, pp.
76
90
. 10.1016/j.cej.2018.08.067
60.
Huang
,
S.
,
Yao
,
Y.
,
Zhang
,
S.
,
Ji
,
J.
, and
Ma
,
R.
,
2018
, “
A Fractal Model for Oil Transport in Tight Porous Media
,”
Transport Porous Med.
,
121
(
3
), pp.
725
739
. 10.1007/s11242-017-0982-1
61.
Zhang
,
F.
, and
Yang
,
D.
,
2017
, “
Effects of Non-Darcy Flow and Penetrating Ratio on Performance of Horizontal Wells With Multiple Fractures in a Tight Formation
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032903
. 10.1115/1.4037903
62.
Yang
,
R.
,
Jiang
,
R.
,
Liu
,
S.
,
Zhang
,
X.
, and
Liu
,
H.
,
2011
, “
Numerical Simulation of Nonlinear Seepage in Ultra-Low Permeability Reservoirs
,”
Acta Petrolei Sinica
,
32
(
2
), pp.
299
306
.
63.
Guo
,
C.
,
Xu
,
J.
,
Wei
,
M.
,
Jiang
,
R.
,
2015
, “
Experimental Study and Numerical Simulation of Hydraulic Fracturing Tight Sandstone Reservoirs
,”
Fuel
,
159
, pp.
334
344
. 10.1016/j.fuel.2015.06.057
64.
Wei
,
X.
,
Qun
,
L.
,
Shusheng
,
G.
,
Zhiming
,
H.
, and
Hui
,
X.
,
2009
, “
Pseudo Threshold Pressure Gradient to Flow for Low Permeability Reservoirs
,”
Petrol. Explor. Dev.
,
36
(
2
), pp.
232
236
. 10.1016/S1876-3804(09)60123-3
65.
Zhang
,
M.
, and
Ayala
,
L. F.
,
2018
, “
A General Boundary Integral Solution for Fluid Flow Analysis in Reservoirs With Complex Fracture Geometries
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052907
. 10.1115/1.4038845
66.
Xu
,
S.
,
Feng
,
Q.
,
Wang
,
S.
,
Javadpour
,
F.
, and
Li
,
Y.
,
2018
, “
Optimization of Multistage Fractured Horizontal Well in Tight Oil Based on Embedded Discrete Fracture Model
,”
Comput. Chem. Eng.
,
117
, pp.
291
308
. 10.1016/j.compchemeng.2018.06.015
67.
Raghavan
,
R.
, and
Chin
,
L. Y.
,
2004
, “
Productivity Changes in Reservoirs With Stress-Dependent Permeability
,”
SPE Reserv. Eval. Eng.
,
7
(
04
), pp.
308
315
. 10.2118/88870-PA
68.
Xu
,
S.
,
Feng
,
Q.
,
Wang
,
S.
, and
Li
,
Y.
,
2019
, “
A 3D Multi-Mechanistic Model for Predicting Shale Gas Permeability
,”
J. Nat. Gas Sci. Eng.
,
68
, pp.
102913
. 10.1016/j.jngse.2019.102913
69.
Chen
,
B.
, and
Xu
,
J.
,
2019
, “
Stochastic Simplex Approximate Gradient for Robust Life-Cycle Production Optimization: Applied to Brugge Field
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092905
. 10.1115/1.4043244
70.
Hongwei
,
C.
,
Qihong
,
F.
,
Xianmin
,
Z.
,
Sen
,
W.
,
Wensheng
,
Z.
, and
Fan
,
L.
,
2018
, “
Well Placement Optimization With Cat Swarm Optimization Algorithm Under Oilfield Development Constraints
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012902
. 10.1115/1.4040754
71.
Jinhu
,
D.
,
He
,
L.
,
Desheng
,
M.
,
Jinhua
,
F.
,
Yuhua
,
W.
, and
Tiyao
,
Z.
,
2014
, “
Discussion on Effective Development Techniques for Continental Tight Oil in China
,”
Petrol. Explor. Dev.
,
41
(
2
), pp.
217
224
. 10.1016/S1876-3804(14)60025-2
72.
Liu
,
Z.
, and
Reynolds
,
A. C.
,
2019
, “
History Matching an Unconventional Reservoir With a Complex Fracture Network
,”
SPE-193921-MS Presented at SPE Reservoir Simulation Conference
,
Galveston, TX
,
Apr. 10–11
.
73.
Ren
,
G.
,
Rafiee
,
J.
,
Aryana
,
S. A.
, and
Younis
,
R. M.
,
2017
, “
A Bayesian Model Selection Analysis of Equilibrium and Nonequilibrium Models for Multiphase Flow in Porous Media
,”
Int. J. Multiphase Flow
,
89
, pp.
313
320
. 10.1016/j.ijmultiphaseflow.2016.11.006
74.
Feng
,
Q.
,
Xia
,
T.
,
Wang
,
S.
, and
Singh
,
H.
,
2017
, “
Pressure Transient Behavior of Horizontal Well With Time-Dependent Fracture Conductivity in Tight Oil Reservoirs
,”
Geofluids
,
2017
, p.
5279792
. 10.1155/2017/5279792
You do not currently have access to this content.