Abstract

In this paper, we present a computational fluid dynamics (CFD) model to perform single- and two-phase fluid flow simulation on two- and three-dimensional perforated porous media with different perforation geometries. The finite volume method (FVM) has been employed to solve the equations governing the fluid flow through the porous media and obtain the pressure and velocity profiles. The volume of fluid (VOF) method has also been utilized for accurate determination of the volume occupied by each phase. The validity of the model has been achieved via comparing the simulation results with the available experimental data in the literature. The model was used to analyze the effect of perforation geometrical parameters (length and diameter), degree of heterogeneity, and also crushed zone properties (permeability and thickness) on the pressure and velocity profiles. The two-phase fluid flow around the perforation tunnel under the transient flow regime was also investigated by considering a constant mass flow boundary condition at the inlet. The developed model successfully predicted the pressure drop and resultant temperature changes for the system of air–water along clean and gravel-filled perforations under the steady-state conditions. The presented model in this study can be used as an efficient tool to design the most appropriate perforation strategy with respect to the well characteristics and reservoir properties.

References

1.
Civan
,
F.
,
2015
,
Reservoir Formation Damage
,
Gulf Professional Publishing
,
Oxford
.
2.
Salehian
,
M.
,
Temizel
,
C.
,
Gok
,
I. M.
,
Cinar
,
M.
, and
Alklih
,
M. Y.
,
2018
, “
Reservoir Management Through Characterization of Smart Fields Using Capacitance-Resistance Models
,”
Abu Dhabi International Petroleum Exhibition & Conference
,
Society of Petroleum Engineers
.
3.
Vasheghani Farahani
,
M.
,
Soleimani
,
R.
,
Jamshidi
,
S.
, and
Salehi
,
S.
,
2014
, “
Development of a Dynamic Model for Drilling Fluid's Filtration: Implications to Prevent Formation Damage
,”
SPE International Symposium and Exhibition on Formation Damage Control
,
Society of Petroleum Engineers
.
4.
Leontaritis
,
K.
,
Amaefule
,
J.
, and
Charles
,
R.
,
1994
, “
A Systematic Approach for the Prevention and Treatment of Formation Damage Caused by Asphaltene Deposition
,”
SPE Prod. Facil.
,
9
(
3
), pp.
157
164
. 10.2118/23810-PA
5.
Krueger
,
R. F.
,
1988
, “
An Overview of Formation Damage and Well Productivity in Oilfield Operations: An Update
,”
SPE California Regional Meeting
,
Society of Petroleum Engineers
.
6.
Movahedi
,
H.
,
Farahani
,
M. V.
, and
Jamshidi
,
S.
,
2017
, “
Application of Hydrated Basil Seeds (HBS) as the Herbal Fiber on Hole Cleaning and Filtration Control
,”
J. Pet. Sci. Eng.
,
152
, pp.
212
228
. 10.1016/j.petrol.2017.02.014
7.
Qi
,
M.
,
Li
,
M.
,
Guo
,
T.
,
Liu
,
C.
,
Gao
,
S.
, and
Tang
,
S.
,
2018
, “
Influence of Oriented Perforation Design on Refracture Reorientation: Simulation and Experiment
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082903
. 10.1115/1.4039742
8.
Ezeakacha
,
C.
,
Salehi
,
S.
, and
Hayatdavoudi
,
A.
,
2017
, “
Experimental Study of Drilling Fluid's Filtration and Mud Cake Evolution in Sandstone Formations
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022912
. 10.1115/1.4035425
9.
Joonaki
,
E.
,
Burgass
,
R.
,
Hassanpouryouzband
,
A.
, and
Tohidi
,
B.
,
2017
, “
Comparison of Experimental Techniques for Evaluation of Chemistries Against Asphaltene Aggregation and Deposition: New Application of High-Pressure and High-Temperature Quartz Crystal Microbalance
,”
Energy Fuels
,
32
(
3
), pp.
2712
2721
. 10.1021/acs.energyfuels.7b02773
10.
Hassanpouryouzband
,
A.
,
Joonaki
,
E.
,
Taghikhani
,
V.
,
Bozorgmehry Boozarjomehry
,
R.
,
Chapoy
,
A.
, and
Tohidi
,
B.
,
2017
, “
New Two-Dimensional Particle-Scale Model To Simulate Asphaltene Deposition in Wellbores and Pipelines
,”
Energy Fuels
,
32
(
3
), pp.
2661
2672
. 10.1021/acs.energyfuels.7b02714
11.
Joonaki
,
E.
,
Buckman
,
J.
,
Burgass
,
R.
, and
Tohidi
,
B.
,
2018
, “
Exploration of the Difference in Molecular Structure of n-C7 and CO2 Induced Asphaltenes
,”
Ind. Eng. Chem. Res.
,
57
(
26
), pp.
8810
8818
.
12.
Soleimani
,
R.
,
Jahanpeyma
,
Y.
, and
Salehian
,
M.
,
2019
, “
Analysis of Horizontal Well Productivity in Tight Gas Formations and its Sensitivity to Reservoir Properties
,”
J. Pet. Explor. Prod. Technol.
,
9
(
2
), pp.
1237
1244
.
13.
Farahani
,
M. V.
,
Shams
,
R.
, and
Jamshidi
,
S.
,
2018
, “
A Robust Modeling Approach for Predicting the Rheological Behavior of Thixotropic Fluids
,”
80th EAGE Conference and Exhibition
.
14.
Economides
,
M. J.
, and
Nolte
,
K. G.
,
1989
,
Reservoir Stimulation
,
Prentice Hall Englewood Cliffs
,
New Jersey
.
15.
Jianguang
,
W.
,
Xuesong
,
L.
,
Xuemei
,
L.
, and
Yuanyuan
,
M.
,
2017
, “
The Experimental and Model Study on Variable Mass Flow for Horizontal Wells With Perforated Completion
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062901
. 10.1115/1.4037026
16.
Yildiz
,
T.
,
2002
, “
Impact of Perforating on Well Performance and Cumulative Production
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
163
172
. 10.1115/1.1487879
17.
Abdulwahid
,
M.
,
Kumar
,
I. N.
, and
Dakhil
,
S.
,
2014
, “
Influence of Radial Flux Inflow Profile on Pressure Drop of Perforated Horizontal Wellbore
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042907
. 10.1115/1.4028770
18.
Fahrenthold
,
E. P.
, and
Cheatham
,
J. B.
, Jr.
,
1986
, “
Incipient Yielding and Solids Production for Perforated Casing Completions
,”
ASME J. Energy Resour. Technol.
,
108
(
4
), pp.
321
325
. 10.1115/1.3231284
19.
Nguyen
,
T.
,
1986
, “
Experimental Study of Non-Darcy Flow Through Perforations
,”
SPE Annual Technical Conference and Exhibition
,
Society of Petroleum Engineers
.
20.
Muskat
,
M.
,
1943
, “
The Effect of Casing Perforations on Well Productivity
,”
Trans. AIME
,
151
(
1
), pp.
175
187
. 10.2118/943175-G
21.
Okonkwo
,
F.
, and
Onyekonwu
,
M.
,
1997
, “
New Pseudo-Skin Model for Flow Convergence to Perforations in Competent Formations
,”
J. Pet. Sci. Eng.
,
17
(
3
), pp.
217
228
. 10.1016/S0920-4105(96)00029-0
22.
Li
,
B.
,
Sun
,
D.
,
Gladkikh
,
M.
, and
Wu
,
J.
,
2012
, “
2D Analytical Solution of Ideal Perforation Flow
,”
SPE J.
,
17
(
2
), pp.
631
652
. 10.2118/128021-PA
23.
Arora
,
D. S.
, and
Sharma
,
M.
,
2000
, “
The Nature of the Compacted Zone Around Perforation Tunnels
,”
SPE International Symposium on Formation Damage Control
, pp.
113
124
.
24.
Harris
,
M.
,
1966
, “
The Effect of Perforating Oil Well Productivity
,”
J. Pet. Technol.
,
18
(
4
), pp.
518
528
. 10.2118/1236-PA
25.
Hong
,
K.
,
1975
, “
Productivity of Perforated Completions in Formations With or Without Damage
,”
J. Pet. Technol.
,
27
(
8
), pp.
1027
1038
. 10.2118/4653-PA
26.
Bell
,
W.
,
Brieger
,
E.
, and
Harrigan
,
J.
,
Jr.
,
1972
, “
Laboratory Flow Characteristics of Gun Perforations
,”
J. Pet. Technol.
,
24
(
9
), pp.
1095
1103
. 10.2118/3444-PA
27.
Tariq
,
S. M.
,
1987
, “
Evaluation of Flow Characteristics of Perforations Including Nonlinear Effects With the Finite-Element Method
,”
SPE Prod. Eng.
,
2
(
2
), pp.
104
112
. 10.2118/12781-PA
28.
Kolařík
,
F.
,
Patzák
,
B.
, and
Zeman
,
J.
,
2016
, “
Numerical Modeling of Fresh Concrete Flow Through Porous Medium
,”
AIP Conf. Proc.
,
1738
(
1
), p.
480047
. 10.1063/1.4952283
29.
Jamiolahmady
,
M.
,
Danesh
,
A.
,
Sohrabi
,
M.
, and
Duncan
,
D.
,
2006
, “
Flow Around a Rock Perforation Surrounded by Crushed Zone: Experiments versus Theory
,”
J. Pet. Sci. Eng.
,
50
(
2
), pp.
102
114
. 10.1016/j.petrol.2005.10.004
30.
Jamiolahmady
,
M.
,
Danesh
,
A.
,
Sohrabi
,
M.
, and
Duncan
,
D.
,
2006
, “
Measurement and Modelling of Gas Condensate Flow Around Rock Perforation
,”
Transp. Porous Media
,
63
(
2
), pp.
323
347
. 10.1007/s11242-005-6870-0
31.
Jamiolahmady
,
M.
,
Mahdiyar
,
H.
, and
Sohrabi
,
M.
,
2010
, “
High Velocity Flow in and Around Long Perforation Tunnels
,”
Transp. Porous Media
,
84
(
2
), pp.
457
469
. 10.1007/s11242-009-9514-y
32.
Zheng
,
L.
,
Rahman
,
M.
,
Ahammad
,
M.
,
Butt
,
S.
, and
Alam
,
J.
, “
Experimental and Numerical Investigation of a Novel Technique for Perforation in Petroleum Reservoir
,”
SPE International Conference and Exhibition on Formation Damage Control
,
2016
,
Society of Petroleum Engineers
.
33.
Gu
,
F.
,
Liu
,
C. J.
,
Yuan
,
X. G.
, and
Yu
,
G. C.
,
2004
, “
CFD Simulation of Liquid Film Flow on Inclined Plates
,”
Chem. Eng. Technol.
,
27
(
10
), pp.
1099
1104
. 10.1002/ceat.200402018
34.
Valluri
,
P.
,
Matar
,
O. K.
,
Hewitt
,
G. F.
, and
Mendes
,
M.
,
2005
, “
Thin Film Flow Over Structured Packings at Moderate Reynolds Numbers
,”
Chem. Eng. Sci.
,
60
(
7
), pp.
1965
1975
. 10.1016/j.ces.2004.12.008
35.
Dixon
,
A. G.
,
Taskin
,
M. E.
,
Nijemeisland
,
M.
, and
Stitt
,
E. H.
,
2010
, “
CFD Method to Couple Three-Dimensional Transport and Reaction Inside Catalyst Particles to the Fixed Bed Flow Field
,”
Ind. Eng. Chem. Res.
,
49
(
19
), pp.
9012
9025
. 10.1021/ie100298q
36.
Hosseini
,
S. H.
,
Shojaee
,
S.
,
Ahmadi
,
G.
, and
Zivdar
,
M.
,
2012
, “
Computational Fluid Dynamics Studies of Dry and Wet Pressure Drops in Structured Packings
,”
J. Ind. Eng. Chem.
,
18
(
4
), pp.
1465
1473
. 10.1016/j.jiec.2012.02.012
37.
Yang
,
Y.
,
Xiang
,
Y.
,
Chu
,
G.
,
Zou
,
H.
,
Sun
,
B.
,
Arowo
,
M.
, and
Chen
,
J.-F.
,
2016
, “
CFD Modeling of Gas–Liquid Mass Transfer Process in a Rotating Packed Bed
,”
Chem. Eng. J.
,
294
, pp.
111
121
. 10.1016/j.cej.2016.02.054
38.
Rahman
,
M.
,
Mustafiz
,
S.
,
Koksal
,
M.
, and
Islam
,
M.
,
2007
, “
Quantifying the Skin Factor for Estimating the Completion Efficiency of Perforation Tunnels in Petroleum Wells
,”
J. Pet. Sci. Eng.
,
58
(
1–2
), pp.
99
110
. 10.1016/j.petrol.2006.11.012
39.
Fattahpour
,
V.
,
Moosavi
,
M.
, and
Mehranpour
,
M.
,
2012
, “
An Experimental Investigation on the Effect of Rock Strength and Perforation Size on Sand Production
,”
J. Pet. Sci. Eng.
,
86
, pp.
172
189
. 10.1016/j.petrol.2012.03.023
40.
Azadi
,
M.
,
Aminossadati
,
S. M.
, and
Chen
,
Z.
,
2017
, “
Development of an Integrated Reservoir-Wellbore Model to Examine the Hydrodynamic Behaviour of Perforated Pipes
,”
J. Pet. Sci. Eng.
,
156
, pp.
269
281
. 10.1016/j.petrol.2017.05.027
41.
Wanniarachchi
,
W. A. M.
,
Ranjith
,
P. G.
,
Li
,
J. C.
, and
Perera
,
M. S. A.
,
2019
, “
Numerical Simulation of Foam-Based Hydraulic Fracturing to Optimise Perforation Spacing and to Investigate Effect of Dip Angle on Hydraulic Fracturing
,”
J. Pet. Sci. Eng.
,
172
, pp.
83
96
. 10.1016/j.petrol.2018.09.032
42.
Jahanpeyma
,
Y.
, and
Jamshidi
,
S.
,
2018
, “
Two-Phase Simulation of Well Control Methods for Gas Kicks in Case of Water and Oil-Based Muds
,”
J. Pet. Sci. Technol.
,
8
(
4
), pp.
34
48
.
43.
Zhou
,
L.
,
Zhang
,
L.
,
Shi
,
W.
,
Agarwal
,
R.
, and
Li
,
W.
,
2018
, “
Transient Computational Fluid Dynamics/Discrete Element Method Simulation of Gas–Solid Flow in a Spouted Bed and Its Validation by High-Speed Imaging Experiment
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012206
. 10.1115/1.4037685
44.
Dal Pizzol
,
A.
, and
Maliska
,
C. R.
,
2012
, “
A Finite Volume Method for the Solution of Fluid Flows Coupled With the Mechanical Behavior of Compacting Porous Media
,”
AIP Conf. Proc.
,
1453
(
1
), pp.
205
210
. 10.1063/1.4711176
45.
Wijeratne
,
D. E. N.
, and
Halvorsen
,
B. M.
,
2015
, “
Computational Study of Fingering Phenomenon in Heavy Oil Reservoir With Water Drive
,”
Fuel
,
158
, pp.
306
314
. 10.1016/j.fuel.2015.05.052
46.
Kelly
,
E.
, and
Grimes
,
R.
,
2012
, “
Experimental and Numerical Investigation of the Velocity Profiles Through a Porous Medium Downstream of a Sharp Bend
,”
AIP Conf. Proc.
,
1453
(
1
), pp.
315
320
. 10.1063/1.4711193
47.
Amani
,
A.
,
Jalilnejad
,
E.
, and
Mousavi
,
S. M.
,
2018
, “
Simulation of Phenol Biodegradation by Ralstonia Eutropha in a Packed-Bed Bioreactor With Batch Recycle Mode Using CFD Technique
,”
J. Ind. Eng. Chem.
,
59
, pp.
310
319
.
48.
Zheng
,
X.
,
Liu
,
Y.
, and
Liu
,
W.
,
2010
, “
Two-dimensional Modeling of the Transport Phenomena in the Adsorber During Pressure Swing Adsorption Process
,”
Ind. Eng. Chem. Res.
,
49
(
22
), pp.
11814
11824
. 10.1021/ie100474n
49.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
50.
Fluent, Inc.
,
2006
, “
FLUENT 6.3 User's Guide
,” Fluent Documentation.
51.
Haroun
,
Y.
,
Legendre
,
D.
, and
Raynal
,
L.
,
2010
, “
Direct Numerical Simulation of Reactive Absorption in Gas–Liquid Flow on Structured Packing Using Interface Capturing Method
,”
Chem. Eng. Sci.
,
65
(
1
), pp.
351
356
. 10.1016/j.ces.2009.07.018
You do not currently have access to this content.